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DOLLAR-DEUTSCHE MARK EXCHANGE RATE



i.i.d. Y ~ N(O,U2) Yt = 0¢¢ Er ~ I\I(O7 ].)

PROBLEMS

1. Empirically y2, ,, and y2 or | ynim | and | y, | are correlated
(Clustering phenomenom).

2. Not constant o2.

3. Unconditional distribution: Leptokurtosis (Heavy tails)
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¥ ~ Mixed Normal u, o2 are random.

MODELS
AR,MA ARMA ARCH-GARCH STOCHASTIC VOLATILITY
model p o2 not constant Two sources of randomness
o2 constant Vi = Ot ¢, 0¢ iid N(0,1)
independent
iid e, ~N(0,1)
Yt = Ot
model cond. o?: or = f(9)
ARCH y?2 ; Solving methods:

GARCH 02 ;; y2 | | simulation; numerical methods

Engle(1982) Clark(1973); Taylor(1982)




STOCHASTIC VOLATILITY MODEL
t t
Y :/ audu+/ osdWs, t>0
0 0

where A; = fot a,du.

Let o+ and Ay L W;. A; is assumed to have locally bounded variation
paths and it is set that M; = fot osdWs, with the added condition that
fot 02ds < oo for all t. This is enough to guarantee that M; is a
local martingale.
So

Y: = Ay + M.

Under these assumptions Y; is a semimartingale. If additionally A; is
continuous then Y} is a member of the continuous stochastic volatility
semimartingale (SVSM€) class.

Notice that o can have serially dependent increments (clustering, fat tails)
and long memory, and can allow jumps. Possible to include leverage effect.



QUADRATIC VARIATION
n—1
[Y]t = pnli—>ngo Z(ijJrl B ij)za
j=0

where tp =0 < t; < ... < t, = t with supj{tj;1 — tj} — 0 as n — oo.

As A; is assumed to be continuous and of finite variation we obtain that

[Y]: = [Al+ + 2[A, M) + [M]: = [M]: = /Ot Uﬁdu _ U?*



QUADRATIC VARIATION
n—1
[Y]t = pnli—>ngo Z(ijJrl B ij)za
j=0

where tp =0 < t; < ... < t, = t with supj{tj;1 — tj} — 0 as n — oo.

As A; is assumed to be continuous and of finite variation we obtain that
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0

Define returns as
Yj: J(S_Y(J—l)(s _/:172,3,,|_t/5j



REALISED VARIANCE

Definition
[t/d]

(Y51 = >y
j=1

Andersen and Bollerslev (1998), Comte and Renault (1998) and
Barndorff-Nielsen and Shephard (2001)

t
[Y5]£21£>[Y]t—/ o2ds
0

if Y e SVSMe.



REALISED VARIANCE

Definition
[t/d]

(Y51 = >y
j=1

Andersen and Bollerslev (1998), Comte and Renault (1998) and
Barndorff-Nielsen and Shephard (2001)

v 2 v [ o2ds

if Y e SVSMe.
Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard (2005)
give result: when § | 0

SR — V1) ¢«

\/2 fot odds

under the assumptions that A; is of locally bounded variation, fot o2du <
and that o is cadlag.

N(0,1),



INCLUDING JUMPS
Yo = y® 4 y©®

N
Yy ¢ svsme y@ =3¢
i=1

where ¢; non-zero random variable and N; finite activity simple counting
process. Example: Compound Poisson Process.
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Quadratic Variation
N
[Y]le = of + > =YD+ [v?)],
i=1

V512 2 Y],



Bipower Variation
|t/6]—1

el =S Iyl vl

Jj=1

t
it 2 [ otds = E(ul) s m(.),
0



Bipower Variation
|t/6]—1

el =S Iyl vl
j=1
t
2{Y}11] /agds pwr=E(ul) wu~ N(O,1).
0
TEST FOR JUMPS
N¢
V51 — 2 (s 257 2
=1

1

812,/ [ otds

Barndorff-Nielsen and Shephard(2004).

(D61 = i} ) 5 NGO, 9ay)

Yry ~ 0.6091.

Andersen, Bollerslev and Diebold (2003), Barndorff-Nielsen and
Shephard (2006), Huang and Tauchen (2005), Tauchen and Zhou (2006).



TRIPOWER VARIATION

Lt/8]—2
{Y5}£2/3’2/3’2/3] _ Z y; ‘2/3| Vit ‘2/3| Vit ’2/3
j=1

t
M2/3{Y}[2/32/32/3] P /0 o2ds,

[Ya][t2] . M2/3{Y }[2/3 2/3,2/3] P, Z c

=1
QUADPOWER VARIATION
[t/6]-3
1/2,1/2,1/2,1/2
(YRR — Ny 2]y (V2] g (Y2 s |2
j=1

t
:“1/2{Y}[1/2 1/2,1/21/2] P, /0 o2ds.

[Y(S]t _'ul 2{Y}1/2 ,1/2,1/2,1/2] P ZC
/ i=1



BIPOWER VARIATION

AT TP T B CR )
—2 ’
812,/ [§ ohdu \F1 Et/ Ly Ly | = Jy ofdu 2 2.60907

SKIPPED VERSION BIPOWER VARIATION

t/5 2
I L R )
5172, [ [ otdu \12 7 T |yJ||YJ+2|_f0 ogdu 2 2.60907
TRIPOWER VARIATION

62
1 th/1 ,2 fo ohdu

——| _ 52
5172, [ [ () du (u2/33 Z;il Ly; 73] yjsa 123 yjuo P73 = [y aﬁdu)
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TESTS FOR JUMPS
Ho: The price process does not include a jump component.
Hi: The prices process consists of a continuous and jump component.

Assume the jump component is a finite activity jump process.

Linear Test-Statistics

1
812,/ [t atds
09%s

where D7y = pa/3hy 5 (13 31y 5 + 213ty 5 — 2) — 7 1.0613

(nap Y5y 222325y & (o, o)

1
81/2,/ [ o4ds
0Ys

where 9¢qy = uml—é(u%,ﬁ—/"’z + 2,@,@42 + 2,““1—/22 —2)—9~1.37702

(kA U232y ) & o g

1

§1/2,/ [ olds

wheredsgy = p7* 4+ 2u7 2 — 5 ~ 0.60907

(,ufz{ys}[tl’o’l] - [Y(s][f]) L N0, 9sBv)



Ratio Test-Statistics

where 91y ~ 1.0613;

where ¥y =~ 1.37702;

where 1953\/ ~ 0.60907.

“3y, }[2/3,2/3,2/3]

fopstfede
( 1vs1? 1)
— N(O,’ﬁTv)
t
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Integrated Quarticity
1) Realised Quarticity (E1)
M Y = My IZy,,

2) Realised Tripower Variation with r = s = u = 4/3 (E2)

M—-2

_ 4/3,4/3,4/3
MH4/§{YM}E/ / /] 4/3 Z |yj, | /3‘}/]+ll
Jj=1

i3

3) Realised Quadpower Variation with r =s = u=v =1 (E3)

M-3

4 1,1,1,1 —4
My *{ Yin}! V= My S i i | Yz 1| Yissi |-
=
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One-sided test
min (07 M2/3{Y }[2/3 ,2/3,2/3] | M]!g])



Integrated Quarticity
1) Realised Quarticity (E1)
M Y = My IZy,,

2) Realised Tripower Variation with r = s = u = 4/3 (E2)

M—-2

_ 4/3,4/3,4/3
MH4/§{YM}E/ / /] 4/3 Z |yj, | /3‘}/]+ll
Jj=1

i3

3) Realised Quadpower Variation with r =s = u=v =1 (E3)

M-3

4 1,1,1,1 —4
My *{ Yin}! V= My S i i | Yz 1| Yissi |-
=

One-sided test
min (07 M2/3{Y }[2/3 ,2/3,2/3] | M]!g])

Modified estimators

M [2/3.2/32/3) M [1/21/2,1/2.1/2)
(57— )mas Yl (7= (Y]

M—2
(M,\i 2)“1_2{YM}E'170‘1]‘




Simulations
Square Root Process (Cox, Ingersoll and Ross (1985))

do? = —\o? — £}dt + wodByy, £>w?/2, A >0,
where B is a standard Brownian motion process.
The square root process has a marginal distribution
02 ~T(2w™2€,2w™2) = (v, a), v>1,
with a mean of ¢ = v/a and a variance of w? = v/a%

We will take A; = 0 and rule out the leverage effect by assuming
Cor{Byt, W} = 0. We will take h=1, A\=0.01, v =4 and a = 8.
The jumps will be i.i.d. N(0,Bv/a), thus a jump has the same variance
as that expected over a (3 x 100)% of a day when there are no jumps.
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NO JUMPS ADDED

Infeasible Tests

12 72 288
Bias SD Cove Bias SD Cove Bias SD Cove
RBV —.363 | 1.16 | 87.4 —.191 | 1.00 | 92.8 —.115 | 1.00 | 93.5
RTV —.313 | 1.13 | 88.5 —.180 | 1.00 | 92.9 —.103 | .994 | 94.1
RQV —.313 | 1.14 | 89.0 —.181 | 1.00 | 93.3 —.104 | .999 | 94.3
RSBV —.424 1.22 85.9 —.199 1.03 92.2 —.129 1.01 93.6

Bias, standard deviation and coverage (95% level) of the infeasible linear test.

Feasible Tests

El E2 E3
Bias SD | Cove Bias SD | Cove Bias SD | Cove
RBV —.086 | .997 | 93.5 —.165 | 1.03 | 91.6 —.173 | 1.04 | 91.3
RTV —.075 | 1992 | 94.3 —.154 | 1.02 | 92.1 —.167 | 1.03 | 91.6
RQV —.076 | .999 | 94.8 —.149 | 1.02 | 92.8 —.167 | 1.04 | 91.7
RSBV —.103 | 1.01 | 94.4 —.161 | 1.04 | 92.9 —.175 | 1.05 | 92.2
Bias, standard deviation and coverage (95% level) of the feasible linear test for M=288.
El E2 E3
Bias SD | Cove Bias SD | Cove Bias SD | Cove
RBV —.041 | 986 | 94.9 —.110 | .980 | 93.7 —.113 | .980 | 93.6
RTV —.015 | 987 | 96.4 —.094 | 971 | 94.1 —.099 | 976 | 94.1
RQV —.007 | 998 | 97.1 —.087 | .968 | 94.8 —.097 | 980 | 94.4
RSBV —.056 | .994 | 95.0 —.117 | 985 | 94.1 —.124 | 989 | 94.0

Bias, standard deviation and coverage (95% level) of the feasible ratio test with M=288.



ADDED JUMP COMPONENT

Infeasible
12 72 288
Bias SD Cove Bias SD Cove Bias SD Cove
50% RBV —.728 | 1.75 78.1 —1.55 | 3.21 69.8 —3.49 | 6.42 55.0
RTV —.639 | 1.60 79.5 —1.36 | 2.70 70.5 —2.91 | 5.19 56.5
RQV —.623 | 1.55 79.7 —1.27 | 2.47 71.1 —2.65 | 4.66 57.7
RSBV —.796 | 1.82 76.9 —1.54 | 3.05 69.2 —3.51 | 6.48 54.9
20% RBV —.469 | 1.25 85.2 —.190 | 1.17 89.9 —.389 | 1.49 87.3
RTV —.407 | 1.23 86.2 —.143 | 1.13 91.4 —.327 | 1.35 88.5
RQV —.384 | 1.22 86.8 —.139 | 1.14 90.7 —.291 | 1.28 90.1
RSBV —.505 | 1.28 83.9 —.224 | 1.15 90.6 —.399 | 1.46 87.0
Bias, standard deviation and coverage (95% level) of the infeasible linear test.
Feasible
E1l E2 E3
Bias SD Cove Bias SD Cove Bias SD Cove
50% RBV —.667 | .875 92.8 —2.10 | 2.88 58.2 —2.16 | 2.96 57.7
RTV —.549 | .808 96.6 —1.72 | 2.32 60.6 —1.79 | 2.42 59.9
RQV —.498 782 97.6 —1.54 | 2.07 62.4 —1.61 2.17 61.1
RSBV —.656 | .877 93.3 —2.07 | 2.87 59.2 —2.14 | 297 58.5
20% RBV —.185 | .956 | 94.2 —.328 | 1.22 | 88.4 —.331 | 1.23 | 88.3
RTV —.143 918 96.6 —.267 1.13 90.6 —.274 1.13 90.4
RQV —.117 | .906 97.3 —.228 | 1.08 91.9 —.239 | 1.02 91.3
RSBV —.203 | .924 95.8 —.327 | 1.16 88.7 —.337 | 1.18 88.5

Bias, standard deviation and coverage (95% level) of the feasible ratio test when one
Jjump is added every day for M=288.




SIZE ADJUSTED TESTS

Infeasible
M 12 72 288
(&Y NQ Pow | Pow CcVv NQ Pow Pow cVv NQ Pow | Pow
B 50% | 20% 50% | 20% 50% | 20%
BV 2.46 | 99.3 | 0.09 | 0.06 1.93 | 97.3 | 0.20 | 0.06 1.85 | 96.8 | 0.34 | 0.09
TV 2.27 | 98.8 | 0.10 | 0.06 1.84 | 96.7 | 0.20 | 0.06 1.75 | 96.1 | 0.35 | 0.08
Qv 2.09 | 98.2 | 0.11 | 0.07 1.80 | 96.4 | 0.18 | 0.07 1.71 | 95.7 | 0.34 | 0.08
SBV || 2.63 | 99.6 | 0.09 | 0.06 1.88 | 97.1 | 0.20 | 0.06 1.83 | 96.7 | 0.35 | 0.08

Critical values (5% size), Normal quantiles and power of the infeasible linear tests when

one jump is added every day.

Feasible
E1l E2 E3

CcVv NQ Pow | Pow CVv NQ Pow | Pow cv NQ Pow | Pow
B 50% | 20% 50% | 20% 50% | 20%
BV 1.63 | 94.9 | 0.08 | 0.05 1.79 | 96.4 | 0.33 | 0.08 1.80 | 96.5 | 0.33 | 0.08
TV 1.52 | 93.6 | 0.07 | 0.04 1.73 | 95.9 | 0.32 | 0.06 1.75 | 96.1 | 0.32 | 0.06
Qv 1.46 | 92.8 | 0.06 | 0.05 1.65 | 95.2 | 0.31 | 0.06 1.70 | 95.6 | 0.31 | 0.06
SBV 1.63 | 94.9 | 0.09 | 0.05 1.78 | 96.3 | 0.33 | 0.07 1.77 | 96.2 | 0.34 | 0.07

Critical values, Normal quantiles and power of the feasible ratio tests for M=288

when one jump is added every day.



Empirical Data

Dollar/Deutsche Mark exchange rates. (Olsen and Associates)
From 1st of December 1986 until 30th of November 1996
Quotes from Reuters screen

Five-minutes data (Market Microstructure Effect)
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M corr RV | BV | 5% | 1% | TV [ 5% | 1% | QV | 5% | 1% | SB | 5% | 1%
12 .001 46 | 39 | .18 | .08 | .36 | .16 | .04 | 34 | .14 | .02 | 36 | .22 | .10
24 .002 46 | 40 | 21 | .10 | 37 | .19 | .08 | .35 | .18 | .05 | .37 | .23 | .12
72 —.001 | 49 | 44 | 22 | 12 | 42 | 23 | .11 | 40 | .22 | .09 | .42 | .28 | .16
144 | —056 | 51 | 47 | .23 | .12 | 45 | 25 | .13 | 43 | 26 | .11 | .44 | .34 | .19
288 | —.092 | 53 | 50 | .19 | .10 | .48 | .23 | .11 | 47 | .26 | .11 | .47 | 37 | .21

Sum of the first five correlation coefficients of the Dollar/ DM series (corr). Average value of realised variance (RV),
realised bipower (BV), tripower (TV), quadpower (QV) and skipped bipower (SB) variation. Proportion of rejections

of the null hypothesis at the 5% and 1% level.
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CONCLUSIONS

Multipower variation provides a tool to test for the presence of jumps
in log-price process.

Tests based on Tripower and Quadpower variation seem to have better size.

Tripower or Quadpower variation give better estimations of integrated
quarticity.

Study the effect of Market Microstructure Noise.



