Slide 1

Semi-parametric Bayesian Inference for **High-Throughput Gene Expression Data**

Peter Müller Department of Biostat., M.D. Anderson Cancer Center

Protein Mass spectrometry:

- Record proteins (mass, time-of-flight) in a probe.
- Data: histogram ("spectrum") with peaks corresponding to detected proteins.

Slide 5

SAGE: Serial Analysis of Gene Expression

- Measure mRNA (tags of 10 base pairs) present in probe.
- Data: tag counts.

Pre-processing: Critically important, but not usually np-bayes.

expression

1. Microarrays: Differential gene expression

2 **Microarrays**

Intro 2.1

Slide 6

Microarrays: Differential Gene Expression

Mixtures:

- Efron et al. (2001 JASA), empirical Bayes
- Parmigiani et al. (2002 JRSSB), mixture of uniform (under-expression), normal (typical) and uniform (over)
- Ibrahim et al. (2002 JASA), mixture with point mass for non-expressed genes

Hierarchical models:

- Newton et al. (2001 J Comp Bio), Gamma/Gamma hierarchical model with indicator for non-differential expression
- Hein et al. (2005 Biostat) and Lewin et al. (2005 Biometrics): hierarchical models.
- and many many others!

Slide 7

- Dependence: Nework models (e.g., Dobra et al. 2004 J MvAnal), CART (Pittman et al, 2004 PNAS), factor models, PCA
- Sample size: Power, ROC curve, parametrized learning curve, decision theoretic

1

Outline

• Random functions = nonparametric Bayes

• High-throughput arrays for gene and protein

2. Mass spectrometry: Mass/charge spectra

3. SAGE: Poisson/Gamma DP mixture

• Prob models on random functions (and densities); • Avoids critical dependence on parametric assumptions;

Nonparametric Bayesian Inference

• Robustifies parametric models (non-parametric model centered at parametric model);

• Probability model on infinite dimensional space, i.e.,

• Model diagnostic and sensitivity analysis.

infinite dimensional parameter vector;

Slide 4

High-Throughput Assays

 $DNA \rightarrow mRNA \rightarrow proteins \rightarrow us \dots$

Microarrays:

- Measure mRNA for a (large) number of selected genes, $g = 1, \ldots, G$.
- Usually multiple arrays (samples): $t = 1, \ldots, N$.
- Data: $(G \times N)$ matrix x_{gt} of gene expression for gene g, sample t.

Intro

Slide 2

Intro

Slide 3

Slide 8

A Semiparametric Mixture of Normal Model with K.-A. Do and F. TANG (M.D. Anderson Cancer Center)

- Microarray experiments: Measure gene expression for many (G = 6, 500) genes simultaneously;
- Under different conditions: e.g., normal vs. tumor tissue $\overline{Slide~12}$
- Data: difference scores x_g for each gene, $g = 1, \ldots, G$, e.g., t-statistic for each gene.

2.2 Data

Slide 9

Differences Scores Affected Genes: differentially expressed genes, difference score

 x_g for difference of normal vs. tumor tissue $f_1(x)$

Non affected genes: non differentially expressed genes, differences normal vs. tumor $f_0(x)$

Data:

mixture of f_0 and f_1 need deconvolution

2.3 Model

Slide 11

Likelihood:

$$p(x_g) = p_0 f_0(x_g) + (1 - p_0) f_1(x_g)$$
: for $g = 1, \dots, G$

"null sample"

Parameters p_0 and (!!) unknown distributions f_0, f_1 **Prior:** $p(p_0), p(f_0)$ and $p(f_1)$ **Posterior inference:** $p(p_0, f_0, f_1 | x)$... and inference for any function of p_0, f_0, f_1 .

DP Mixture of Normals

DP mixture of normals:

- f_j : mixture of normals with random mixing measure F_j
- DP prior for F_j

$$f_j(x) = \int N(x; \ \mu, \sigma) \ dF_j(\mu)$$
$$F_j \sim DP(F^*, M).$$

Base measure:

 $F_0^{\star} = N(0, 1)$ unimodal around 0; $F_1^{\star} = 0.5N(-b, 1) + 0.5N(+b, 1)$, bimodal around 0.

Slide 13

Posterior MCMC

Random partition:

- F_0 is a.s. discrete \rightarrow ties
- { μ_1^*,\ldots,μ_L^* }: unique μ_g 's
- Indicators s_g with $s_g = j$ iff $\mu_g = \mu_j^*$

Joint prior: marginalize w.r.t. $F_0 \rightarrow p(s, \mu) = p(s) p(\mu \mid s)$

$$p(s) = \frac{M^L \Gamma(M) \prod_{j=1}^L \Gamma(n_j)}{\Gamma(M+G)} \text{ and } p(\mu_j^* \mid s) = F^*(\mu_j^*)$$

Easy to show from Polya urn scheme.

Slide 14

Conjugate DP mixture:

- Conjugate normal base measure F_0^{\star}
- marginalize w.r.t. μ^* to find $p(x \mid s)$
- easy MCMC

 f_1 : same thing ...

2.4 Results

Slide 15

Posterior inference: RPM

Posterior draws $f_0 \sim p(f_0 \mid data)$ (left) $f_1 \sim p(f_1 \mid data)$ (right).

Slide 16

Posterior inference: Differential expression

Recall splg model: $x_g \sim p_0 f_0(x) + (1 - p_0) f_1(x)$. Equivalent hierarchical model:

$$p(x_g \mid r_g = j) = f_j(x_g)$$
$$Pr(r_g = 0) = p_0$$

Interpret r_g as indicator for diff expression.

Posterior: Can show $E(r_g \mid data) = E(P_1(x_g) \mid data)$ for

$$P_1(x_g) = \frac{(1-p_0)f_1(x)}{p_0 f_0(x) + (1-p_0)f_1(x)}$$

Slide 17

 $E(P_1(x_g) \mid data)$ (solid curve) and truth (dashed) against x_g .

Slide 18

With and Without Null Sample

Slide 19

Limitations and Extensions

- **Difference scores:** Not clear what is the right way to define x_g .
- **Dependence:** Gene expression is dependent across g arrgh!
- **Design:** Only considered two-group comparison. More general layouts are used.
- **Too easy!** Using *null sample* you essentially nail f_0 .

3 Protein Mass Spectra

3.1 Intro

Slide 20

Protein Mass/Charge Spectra

MALDI-TOF: Matrix Assisted Laser Desorption Ionization

- Suspend a sample in a matrix
- Laser ionizes molecules from sample (laser-induced desorption process)
- Electric field accelerates particles
- Time Of Flight: separates ions by mass/charge
 - TOF $\propto (m/z)^{1/2}$
 - Measure the proportions of ions with size $\mathrm{m/z}$

Slide 21

Data

Mixture of Betas

Peaks: Kernels Be(m, s), location m, scale s.

$$f_t(m) = \sum_{g=1}^G w_{xg} \operatorname{Be}(m; \epsilon_g, \alpha_g)$$

biologic cond $x = x_t$

 $G_0 = 17$ normal samples, $G_1 = 24$ tumor samples; histogram of mass/charge ratios on grid of size I = 60,000. First Annual Conf on Proteomics & Data Mining at Duke

Slide 23

U.

Slide 26

Multi-step methods. Baggerly et al. (2003, Proteomics):

- baseline subtraction (with windowed local min);
- sinusoidal noise removal (! a/c current);
- windowed dimension reduction to define peaks;
- genetic algorithm and exhaustive search to find subsets of peaks.

Wavelet-based smoothing. Morris et al. (2005 Biometrics): represent spectra in wavelet basis \rightarrow dimension reduction and convenient smoothing.

Likelihood:

• $y_t(m)$ count of events at mass m with $p_t(m)$. empirical distr of n samples from p_t

$$\log p(y \mid \theta) = \sum_{t=1}^{N} \sum_{i=1}^{I} y_t(m_i) \log p_t(m_i)$$

(density estimation likelihood)

3.3 Results

Slide 27

noise due to initial velocity dist & mmt error \rightarrow peak centered around m.

Prob model for f_t and $B_t \rightarrow$

- inference on peaks,
- expression of peaks across conditions.

4

Differential expression

Marginal posterior probabilities of differential expr.

Slide 30

Results – MCMC

 ϵ_a vs. iteration J vs. iteration

Some aspects of the posterior simulation

Limitations ... 3.4

Slide 31

Limitations and Extensions

- **Sampling model:** Used w_{xq} , same for all samples with same biol condition x. Additional variability is reasonable.
- this in prior.
- **Protein identity:** Need to match different ϵ_q with actual proteins (mode matching problem).

Design: Usually more than two samples.

Likelihood: Neither is perfect:

- Density estimation: y_t as empirical distribution of a random sample from p_t
- Regression: $y_t = p_t + \text{residual}$.

SAGE 4

4.1Intro

Slide 32

Serial Analysis of Gene Expression (SAGE)

Data: tags counts y_g , $g = 1, \ldots, G_0$

Censoring: tags with $y_q = 0$ are not recorded

Skewed data: few tags with large count; many with small counts

Zhang et al. (1997, Science).

Slide 33

Mixture of two Dirichlets: Morris et al. (2003 Biometrics),

- Multinomial sampling $y \sim Mn(\pi; n)$
- (latent) split into scarce and abundant tags
- Dirichlet prior for for scarce and abundant tag frequencies

4.2Model

Slide 34 A DP Mixture Model for SAGE Data Goal: generalize mix of two Dirichlet ... First: replace multinomial by Poisson sampling **Sampling:** Indep Poisson $y_q \sim Poi(\lambda_q)$ **Prior:** Peaks for higher mass proteins are wider. Could use **Prior:** $\lambda_g \sim F$ **Hyperprior:** $F \sim DP(F^*, M)$

Slide 35

DP Mixture Model

Model: $y_q \sim \int Poi(y_q; \lambda_q) dF(\lambda_q)$ and $F \sim DP(F^*, M)$ Random partition: etc., as in the normal-normal DP mixture earlier

Conjugate DP mixture:

- Conjugate (Gamma) base measure.
- Marginalize w.r.t. λ^* to find $p(y \mid s)$
- easy MCMC

4.3 Posterior Inference

Slide 36

Posterior inference

$Slide \ 37$

Posterior Random Measure

Slide 38

Summary

- NP Bayes to represent random distributions and functions for massive gene and protein expression data.
- If sample size = number of genes, then we have ample data.
- Joint description of all uncertainties is important to address multiplicities
- We have only discussed two-group comparisons. Most experiments involve more complicated designs (ANOVA etc.)