Protein Mass spectrometry:
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e Record proteins (mass, time-of-flight) in a probe.
Semi-parametric Bayesian Inference for e Data: histogram (“spectrum”) with peaks
High-Throughput Gene Expression Data corresponding to detected proteins.

PETER MULLER
Department of Biostat., M.D. Anderson Cancer Center
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SAGE: Serial Analysis of Gene Expression

1 Intro e Measure mRNA (tags of 10 base pairs) present in
probe.
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e Data: tag counts.

Outline Pre-processing: Critically important, but not usually

Intro np-bayes.

e Random functions = nonparametric Bayes

e High-throughput arrays for gene and protein
expression

1. Microarrays: Differential gene expression 2 Mlcroarrays

2. Mass spectrometry: Mass/charge spectra 2.1 Intro

3. SAGE: Poisson/Gamma DP mixture )
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Microarrays: Differential Gene Expression
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Mixtures:

Nonparametric Bayesian Inference
e Efron et al. (2001 JASA), empirical Bayes

e Probability model on infinite dimensional space, i.e., e Parmigiani et al. (2002 JRSSB), mixture of
infinite dimensional parameter vector; uniform (under-expression), normal (typical) and

uniform (over)

e Prob models on random functions (and densities); e Tbrahim et al. (2002 JASA), mixture with point

e Avoids critical dependence on parametric assumptions; mass for non-expressed genes
e Robustifies parametric models (non-parametric model Hierarchical models:
centered at parametric model);
] ) o _ e Newton et al. (2001 J Comp Bio),
e Model diagnostic and sensitivity analysis. Gamma/Gamma hierarchical model with indicator
for non-differential expression
e Hein et al. (2005 Biostat) and Lewin et al. (2005
Slide 4 Biometrics): hierarchical models.

e and many many others!

High-Throughput Assays

DNA — mRNA — proteins — us ...

Microarrays: Slide 7

e Measure mRNA for a (large) number of selected Dependence: Nework models (e.g., Dobra et al. 2004 J

genes, g =1,...,G. MvAnal), CART (Pittman et al, 2004 PNAS), factor
e Usually multiple arrays (samples): t =1,..., N. models, PCA
e Data: (G x N) matrix x4 of gene expression for Sample size: Power, ROC curve, parametrized learning
gene g, sample t. curve, decision theoretic



p(rg) = folzy) cforg=G+1,...,2G
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A Semiparametric Mixture of Normal Model
with K.-A. Do and F. TANG (M.D. Anderson Cancer
Center)

e Microarray experiments: Measure gene expression for
many (G = 6,500) genes simultaneously;

“null sample”
Parameters pg and (!!) unknown distributions fy, f1
Prior: p(pg), p(fo) and p(f1)
Posterior inference: p(po, fo, f1 | x)

. and inference for any function of py, fo, f1.

e Under different conditions: e.g., normal vs. tumor tissue Slide 12

e Data: difference scores x4 for each gene, g =1,...,G,

e.g., t-statistic for each gene.

2.2 Data

DP Mixture of Normals
DP mixture of normals:

o f; : mixture of normals with random mixing
measure F}

e DP prior for F}
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Differences Scores
Affected Genes:
differentially expressed
genes, difference score
x4 for difference of nor-
mal vs. tumor tissue

Base measure:
Fy = N(0,1) unimodal around 0;
Ff =0.5N(—b,1) + 0.5N(+b,1), bimodal around 0.

Non affected genes: :
non differentially Slide 153
expressed genes, differ-
ences normal vs. tumor H Posterior MCMC
x _—

Jol@) R Random partition:
Slide 10 o [y is a.s. discrete — ties

o {u},..., 15 }: unique pg's

e Indicators s, with s, = j iff g = pi
Data: . . o
mixture of fy and f; Joint prior: marginalize w.r.t. Fy — p(s, ) = p(s) p(pe | )
need deconvolution L

_ MLF(M)HJ‘:1F(”J’) « kg %

“Null sample”
(Fake) differences be-
tween equal conditions:

x ~ folx)

2.3 Model

Easy to show from Polya urn scheme.
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Conjugate DP mixture:

e Conjugate normal base measure Fj
e marginalize w.r.t. u* to find p(z | s)
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Likelihood:

p(zy) = pofolxg) + (1 —po)fi(zy): for g=1,...,G

e casy MCMC

f1: same thing ...



2.4 Results

Slide 19

Slide 15

Posterior inference: RPM

He

@)
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Posterior draws fy ~ p(fo | data) (left) f1 ~ p(f1 | data)
(right).

Limitations and Extensions

Difference scores: Not clear what is the right way to
define z,.

Dependence: Gene expression is dependent across g —
arrgh!

Design: Only considered two-group comparison. More
general layouts are used.

Too easy! Using null sample you essentially nail fy.
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Posterior inference: Differential expression

Recall splg model: z, ~ pg fo(z) + (1 — po) f1(z).
Equivalent hierarchical model:
p(ag [ 1y =17) fi(zg)
Pr(ry=0) = po
Interpret ry as indicator for diff expression.
Posterior: Can show E(r, | data) = E(Pi(xg) | data) for

L (1 —po)fi(x)
Pi(zy) = po fo(x) + (1 —po) f1(x)

3 Protein Mass Spectra

3.1 Intro
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Protein Mass/Charge Spectra

MALDI-TOF: Matrix Assisted Laser Desorption

Tonization

Suspend a sample in a matrix

e Laser ionizes molecules from sample (laser-induced
desorption process)
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— Mean Curve L
-~ Directly Fromr |/ s

e Electric field accelerates particles

e Time Of Flight: separates ions by mass/charge
— TOF  (m/2)/?
— Measure the proportions of ions with size m/z
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With and Without Null Sample
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Data




Mixture of Betas
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Peaks: Kernels Be(m, s), location m, scale s.
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fe(m) = wag Be(m; €4, )

g=1

WZ RATIO Wz RATIO biOlOgiC cond z — 2,
s J
Baseline: B;(y) = >_5L, vy Be(mi|ni, Bis)-
G() = 17 normal sax lpleS, Gl = 24 tumor Samples; (y) =11 ( l|77 7 _])

histogram of mass/charge ratios on grid of size I = 60, 000. Spectrum: p;(m) = pox Bi(m) + (1 — pox) fr(m)
First Annual Conf on Proteomics & Data Mining at Duke
U.
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Multi-step methods. Baggerly et al. (2003, Proteomics): Likelihood:

e y;(m) count of events at mass m with p;(m).

e baseline subtraction (with windowed local min); empirical distr of n samples from p
¢

sinusoidal noise removal (! a/c current);

windowed dimension reduction to define peaks; !
logp(y | 0) Z > ye(mi) log pe (ms)

t=1 i=1

genetic algorithm and exhaustive search to find

subsets of peaks.
(density estimation likelihood)
Wavelet-based smoothing. Morris et al. (2005

Biometrics): represent spectra in wavelet basis —
dimension reduction and convenient smoothing.

3.3 Results
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3.2 Model
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Estimated Spectra

A Mixture of Beta Model for Protein Mass/charge Spectra
with KiM-ANH Do, KEITH BAGGERLY and RAJ

BANDYOPADHYAY ) ] Juu o A

Data: spectrum = histogram y;(m) of observed counts,
sample ¢, mass/charge m

(a) E[f. ()I Y], (b) ELf:(-) [ Y],

normal x; =0 tumor z; =1
Parameter: p;(m;) = frequency of m/z ratio m;.

Goal: Decompose p; into background B; and protein peaks Elf¢(m) | Y, z; = a]. Estimated spectrum for normal and
f, tumor samples.

e Background: detector noise, protein fragments,  Slide 28
matrix .

e Protein peaks each protein with m/z ratio m plus Prob Model on f;:
noise due to initial velocity dist & mmt error
— peak centered around m.

Prob model for f; and B; —

nnnnn 100000 15000 200000 B 10000 15000 20000
V2 RATIO

e inference on peaks, 7 e
e expression of peaks across conditions. (&) fe ~plfe(-) | Y], (b) fe ~plfe(-) | Y],
normal x; =1 tumor x; =1
Random draws from the posterior on the unknown spectra.
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Differential expression Serial Analysis of Gene Expression (SAGE)

Marginal posterior probabilities of differential expr. Data: tags counts g, ¢ = 1, ..., Go

E(X | data) vs. €, E(wge | data) vs. e Censoring: tags with y, = 0 are not recorded
Moo ) E Skewed data: few tags with large count; many with small
counts
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Zhang et al. (1997, Science).
Results - MCMC
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Mixture of two Dirichlets: Morris et al. (2003
Biometrics),

T e Multinomial sampling y ~ Mn(7;n)

T T
00400 2404 4e+04  Ge+0:
ITERATION

o (latent) split into scarce and abundant tags
€g vs. iteration J vs. iteration e Dirichlet prior for for scarce and abundant tag

Some aspects of the posterior simulation frequencies

3.4 Limitations ... 4.2 Model
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Limitations and Extensions A DP Mixture Model for SAGE Data
Sampling model: Used w4, same for all samples with Goal: generalize mix of two Dirichlet ...
same biol condition x. Additional variability is First: replace multinomial by Poisson sampling
reasonable.

Sampling: Indep Poisson y, ~ Poi(A,)
Prlotr}iiSPienaksrii(;r higher mass proteins are wider. Could use ppior: Ag ~ F
prior. Hyperprior: F' ~ DP(F*, M)
Protein identity: Need to match different ¢, with actual
proteins (mode matching problem).

Design: Usually more than two samples. Slide 95
Likelihood: Neither is perfect:

e Density estimation: y, as empirical distribution of PP Mixture Model
a random sample from p; Model: y, ~ [ Poi(yg; A\g) dF(N\y) and F ~ DP(F*, M)
* Regression: y; = p;+ residual. Random partition: etc., as in the normal-normal DP
mixture earlier

Conjugate DP mixture:

e Conjugate (Gamma) base measure.

4 SAGE e Marginalize w.r.t. A* to find p(y | s)
e casy MCMC

4.1 Intro

Slide 32



4.3 Posterior Inference
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Posterior inference

Ai VS, y; p(L | data)
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Posterior Random Measure

E(F| data) E(F | data), A < 100
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Summary

NP Bayes to represent random distributions and
functions for massive gene and protein expression data.

If sample size = number of genes, then we have ample
data.

Joint description of all uncertainties is important to
address multiplicities

We have only discussed two-group comparisons.
Most experiments involve more complicated designs
(ANOVA etc.)



