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Semi-parametric Bayesian Inference for
High-Throughput Gene Expression Data

Peter Müller
Department of Biostat., M.D. Anderson Cancer Center

1 Intro
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Outline

Intro

• Random functions = nonparametric Bayes
• High-throughput arrays for gene and protein

expression

1. Microarrays: Differential gene expression

2. Mass spectrometry: Mass/charge spectra

3. SAGE: Poisson/Gamma DP mixture
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Nonparametric Bayesian Inference

• Probability model on infinite dimensional space, i.e.,
infinite dimensional parameter vector;

• Prob models on random functions (and densities);

• Avoids critical dependence on parametric assumptions;

• Robustifies parametric models (non-parametric model
centered at parametric model);

• Model diagnostic and sensitivity analysis.
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High-Throughput Assays

DNA → mRNA → proteins → us . . .

Microarrays:

• Measure mRNA for a (large) number of selected
genes, g = 1, . . . , G.

• Usually multiple arrays (samples): t = 1, . . . , N .
• Data: (G×N) matrix xgt of gene expression for

gene g, sample t.

Protein Mass spectrometry:

• Record proteins (mass, time-of-flight) in a probe.
• Data: histogram (“spectrum”) with peaks

corresponding to detected proteins.
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SAGE: Serial Analysis of Gene Expression

• Measure mRNA (tags of 10 base pairs) present in
probe.

• Data: tag counts.

Pre-processing: Critically important, but not usually
np-bayes.

2 Microarrays

2.1 Intro
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Microarrays: Differential Gene Expression

Mixtures:

• Efron et al. (2001 JASA), empirical Bayes
• Parmigiani et al. (2002 JRSSB), mixture of

uniform (under-expression), normal (typical) and
uniform (over)

• Ibrahim et al. (2002 JASA), mixture with point
mass for non-expressed genes

Hierarchical models:

• Newton et al. (2001 J Comp Bio),
Gamma/Gamma hierarchical model with indicator
for non-differential expression

• Hein et al. (2005 Biostat) and Lewin et al. (2005
Biometrics): hierarchical models.

• and many many others!
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Dependence: Nework models (e.g., Dobra et al. 2004 J
MvAnal), CART (Pittman et al, 2004 PNAS), factor
models, PCA

Sample size: Power, ROC curve, parametrized learning
curve, decision theoretic
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A Semiparametric Mixture of Normal Model
with K.-A. Do and F. Tang (M.D. Anderson Cancer
Center)

• Microarray experiments: Measure gene expression for
many (G = 6, 500) genes simultaneously;

• Under different conditions: e.g., normal vs. tumor tissue

• Data: difference scores xg for each gene, g = 1, . . . , G,
e.g., t-statistic for each gene.

2.2 Data
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Differences Scores
Affected Genes:
differentially expressed
genes, difference score
xg for difference of nor-
mal vs. tumor tissue
f1(x) z1

−4 −2 0 2 4

Non affected genes:
non differentially
expressed genes, differ-
ences normal vs. tumor
f0(x)

z0
−4 −2 0 2 4
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Data:
mixture of f0 and f1

need deconvolution

 SAMPLE

z
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en

si
ty
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“Null sample”
(Fake) differences be-
tween equal conditions:
x ∼ f0(x) ‘

z0
−4 −2 0 2 4

2.3 Model
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Likelihood:

p(xg) = p0f0(xg) + (1− p0)f1(xg): for g = 1, . . . , G

p(xg) = f0(xg) : for g = G + 1, . . . , 2G

“null sample”

Parameters p0 and (!!) unknown distributions f0, f1

Prior: p(p0), p(f0) and p(f1)

Posterior inference: p(p0, f0, f1 | x)

. . . and inference for any function of p0, f0, f1.
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DP Mixture of Normals

DP mixture of normals:

• fj : mixture of normals with random mixing
measure Fj

• DP prior for Fj

fj(x) =
∫

N(x; µ, σ) dFj(µ)

Fj ∼ DP (F ?,M).

Base measure:
F ?

0 = N(0, 1) unimodal around 0;
F ?

1 = 0.5N(−b, 1) + 0.5N(+b, 1), bimodal around 0.
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Posterior MCMC

Random partition:

• F0 is a.s. discrete → ties
• {µ∗

1, . . . , µ
∗
L}: unique µg’s

• Indicators sg with sg = j iff µg = µ∗
j

Joint prior: marginalize w.r.t. F0 → p(s, µ) = p(s) p(µ | s)

p(s) =
ML Γ(M)

∏L
j=1 Γ(nj)

Γ(M + G)
and p(µ∗

j | s) = F ?(µ∗
j )

Easy to show from Polya urn scheme.
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Conjugate DP mixture:

• Conjugate normal base measure F ?
0

• marginalize w.r.t. µ∗ to find p(x | s)
• easy MCMC

f1: same thing . . .
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2.4 Results

Slide 15

Posterior inference: RPM

Posterior draws f0 ∼ p(f0 | data) (left) f1 ∼ p(f1 | data)
(right).
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Posterior inference: Differential expression

Recall splg model: xg ∼ p0 f0(x) + (1− p0) f1(x).
Equivalent hierarchical model:

p(xg | rg = j) = fj(xg)
Pr(rg = 0) = p0

Interpret rg as indicator for diff expression.
Posterior: Can show E(rg | data) = E(P1(xg) | data) for

P1(xg) =
(1− p0)f1(x)

p0 f0(x) + (1− p0) f1(x)
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E(P1(xg) | data) (solid curve) and truth (dashed) against xg.
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With and Without Null Sample
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Limitations and Extensions

Difference scores: Not clear what is the right way to
define xg.

Dependence: Gene expression is dependent across g —
arrgh!

Design: Only considered two-group comparison. More
general layouts are used.

Too easy! Using null sample you essentially nail f0.

3 Protein Mass Spectra

3.1 Intro
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Protein Mass/Charge Spectra

MALDI-TOF: Matrix Assisted Laser Desorption
Ionization

• Suspend a sample in a matrix
• Laser ionizes molecules from sample (laser-induced

desorption process)
• Electric field accelerates particles
• Time Of Flight: separates ions by mass/charge

– TOF ∝ (m/z)1/2

– Measure the proportions of ions with size m/z
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Data
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G0 = 17 normal samples, G1 = 24 tumor samples;
histogram of mass/charge ratios on grid of size I = 60, 000.
First Annual Conf on Proteomics & Data Mining at Duke
U.
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Multi-step methods. Baggerly et al. (2003, Proteomics):

• baseline subtraction (with windowed local min);
• sinusoidal noise removal (! a/c current);
• windowed dimension reduction to define peaks;
• genetic algorithm and exhaustive search to find

subsets of peaks.

Wavelet-based smoothing. Morris et al. (2005
Biometrics): represent spectra in wavelet basis →
dimension reduction and convenient smoothing.

3.2 Model
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A Mixture of Beta Model for Protein Mass/charge Spectra
with Kim-Anh Do, Keith Baggerly and Raj
Bandyopadhyay

Data: spectrum = histogram yt(m) of observed counts,
sample t, mass/charge m

Parameter: pt(mi) = frequency of m/z ratio mi.

Goal: Decompose pt into background Bt and protein peaks
ft.

• Background: detector noise, protein fragments,
matrix . . .

• Protein peaks: each protein with m/z ratio m plus
noise due to initial velocity dist & mmt error
→ peak centered around m.

Prob model for ft and Bt →

• inference on peaks,
• expression of peaks across conditions.
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Mixture of Betas

Peaks: Kernels Be(m, s), location m, scale s.

ft(m) =
G∑

g=1

wxg Be(m; εg, αg)

biologic cond x = xt

Baseline: Bt(y) =
∑Jt

j=1 vtj Be(mi|ηtj , βtj).

Spectrum: pt(m) = p0kBt(m) + (1− p0k)ft(m)
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Likelihood:

• yt(m) count of events at mass m with pt(m).
empirical distr of n samples from pt

log p(y | θ) =
N∑

t=1

I∑
i=1

yt(mi) log pt(mi)

(density estimation likelihood)

3.3 Results
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Estimated Spectra
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(a) E[ft(·) | Y ], (b) E[ft(·) | Y ],
normal xt = 0 tumor xt = 1

E[ft(m) | Y, xt = x]. Estimated spectrum for normal and
tumor samples.
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Prob Model on ft:
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(a) ft ∼ p[ft(·) | Y ], (b) ft ∼ p[ft(·) | Y ],
normal xt = 1 tumor xt = 1

Random draws from the posterior on the unknown spectra.
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Differential expression
Marginal posterior probabilities of differential expr.

E(λ | data) vs. εg E(wgx | data) vs. εg
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Results – MCMC
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εg vs. iteration J vs. iteration

Some aspects of the posterior simulation

3.4 Limitations ...
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Limitations and Extensions

Sampling model: Used wxg, same for all samples with
same biol condition x. Additional variability is
reasonable.

Prior: Peaks for higher mass proteins are wider. Could use
this in prior.

Protein identity: Need to match different εg with actual
proteins (mode matching problem).

Design: Usually more than two samples.

Likelihood: Neither is perfect:

• Density estimation: yt as empirical distribution of
a random sample from pt

• Regression: yt = pt+ residual.

4 SAGE

4.1 Intro
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Serial Analysis of Gene Expression (SAGE)

Data: tags counts yg, g = 1, . . . , G0

Censoring: tags with yg = 0 are not recorded
Skewed data: few tags with large count; many with small

counts

 

log(COUNTS)

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
20

00
60

00
10

00
0

Zhang et al. (1997, Science).
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Mixture of two Dirichlets: Morris et al. (2003
Biometrics),

• Multinomial sampling y ∼ Mn(π;n)
• (latent) split into scarce and abundant tags
• Dirichlet prior for for scarce and abundant tag

frequencies

4.2 Model
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A DP Mixture Model for SAGE Data

Goal: generalize mix of two Dirichlet . . .

First: replace multinomial by Poisson sampling
Sampling: Indep Poisson yg ∼ Poi(λg)
Prior: λg ∼ F

Hyperprior: F ∼ DP (F ?,M)
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DP Mixture Model

Model: yg ∼
∫

Poi(yg; λg) dF (λg) and F ∼ DP (F ?,M)
Random partition: etc., as in the normal-normal DP

mixture earlier
Conjugate DP mixture:

• Conjugate (Gamma) base measure.
• Marginalize w.r.t. λ∗ to find p(y | s)
• easy MCMC
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4.3 Posterior Inference
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Posterior inference

λi vs. yi p(L | data)
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Posterior Random Measure

E(F | data) E(F | data), λ < 100
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Summary

• NP Bayes to represent random distributions and
functions for massive gene and protein expression data.

• If sample size = number of genes, then we have ample
data.

• Joint description of all uncertainties is important to
address multiplicities

• We have only discussed two-group comparisons.
Most experiments involve more complicated designs
(ANOVA etc.)
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