Protein Mass spectrometry:

Slide 1

Semi-parametric Bayesian Inference for High-Throughput Gene Expression Data

Peter Müller

Department of Biostat., M.D. Anderson Cancer Center
Slide 5

SAGE: Serial Analysis of Gene Expression

- Measure mRNA (tags of 10 base pairs) present in probe.
- Data: tag counts.

Outline

Intro

- Random functions $=$ nonparametric Bayes
- High-throughput arrays for gene and protein expression

1. Microarrays: Differential gene expression
2. Mass spectrometry: Mass/charge spectra
3. SAGE: Poisson/Gamma DP mixture

- Record proteins (mass, time-of-flight) in a probe.
- Data: histogram ("spectrum") with peaks corresponding to detected proteins.

Pre-processing: Critically important, but not usually np-bayes.

2 Microarrays

2.1 Intro

Slide 6

Microarrays: Differential Gene Expression

Mixtures:

- Efron et al. (2001 JASA), empirical Bayes
- Parmigiani et al. (2002 JRSSB), mixture of uniform (under-expression), normal (typical) and uniform (over)
- Ibrahim et al. (2002 JASA), mixture with point mass for non-expressed genes
- Avoids critical dependence on parametric assumptions;
- Robustifies parametric models (non-parametric model centered at parametric model);
- Model diagnostic and sensitivity analysis.

Slide 4

High-Throughput Assays
DNA \rightarrow mRNA \rightarrow proteins \rightarrow us \ldots

Microarrays:

- Measure mRNA for a (large) number of selected genes, $g=1, \ldots, G$.
- Usually multiple arrays (samples): $t=1, \ldots, N$.
- Data: $(G \times N)$ matrix $x_{g t}$ of gene expression for gene g, sample t.

Slide 7

Dependence: Nework models (e.g., Dobra et al. 2004 J MvAnal), CART (Pittman et al, 2004 PNAS), factor models, PCA
Sample size: Power, ROC curve, parametrized learning curve, decision theoretic

Slide 8

A Semiparametric Mixture of Normal Model
with K.-A. Do and F. Tang (M.D. Anderson Cancer Center)

- Microarray experiments: Measure gene expression for many $(G=6,500)$ genes simultaneously;
- Under different conditions: e.g., normal vs. tumor tissue Slide 12
- Data: difference scores x_{g} for each gene, $g=1, \ldots, G$, e.g., t-statistic for each gene.

DP Mixture of Normals

DP mixture of normals:

- f_{j} : mixture of normals with random mixing measure F_{j}
- DP prior for F_{j}

Slide 9

Differences Scores

Affected Genes:
differentially expressed genes, difference score x_{g} for difference of normal vs. tumor tissue $f_{1}(x)$

Non affected genes:
non differentially expressed genes, differences normal vs. tumor $f_{0}(x)$

Slide 10

Data:
mixture of f_{0} and f_{1} need deconvolution

"Null sample"
(Fake) differences between equal conditions: $x \sim f_{0}(x)$ '

2.3 Model

Slide 11

Likelihood:

$$
p\left(x_{g}\right)=p_{0} f_{0}\left(x_{g}\right)+\left(1-p_{0}\right) f_{1}\left(x_{g}\right): \text { for } g=1, \ldots, G
$$

2.4 Results

Slide 15

Posterior inference: RPM

Posterior draws $f_{0} \sim p\left(f_{0} \mid\right.$ data $)$ (left) $f_{1} \sim p\left(f_{1} \mid\right.$ data $)$ (right).

Slide 16

Posterior inference: Differential expression

Recall splg model: $x_{g} \sim p_{0} f_{0}(x)+\left(1-p_{0}\right) f_{1}(x)$.
Equivalent hierarchical model:

$$
\begin{aligned}
p\left(x_{g} \mid r_{g}=j\right) & =f_{j}\left(x_{g}\right) \\
\operatorname{Pr}\left(r_{g}=0\right) & =p_{0}
\end{aligned}
$$

Interpret r_{g} as indicator for diff expression.
Posterior: Can show $E\left(r_{g} \mid\right.$ data $)=E\left(P_{1}\left(x_{g}\right) \mid\right.$ data $)$ for

$$
P_{1}\left(x_{g}\right)=\frac{\left(1-p_{0}\right) f_{1}(x)}{p_{0} f_{0}(x)+\left(1-p_{0}\right) f_{1}(x)}
$$

Slide 17

$E\left(P_{1}\left(x_{g}\right) \mid\right.$ data $)$ (solid curve) and truth (dashed) against x_{g}

Slide 18

With and Without Null Sample

3 Protein Mass Spectra

3.1 Intro

Slide 20

Protein Mass/Charge Spectra

MALDI-TOF: Matrix Assisted Laser Desorption Ionization

- Suspend a sample in a matrix
- Laser ionizes molecules from sample (laser-induced desorption process)
- Electric field accelerates particles
- Time Of Flight: separates ions by mass/charge
- TOF $\propto(m / z)^{1 / 2}$
- Measure the proportions of ions with size m / z

Slide 21

Slide 22

Mixture of Betas

Peaks: Kernels $\operatorname{Be}(m, s)$, location m, scale s.

$$
f_{t}(m)=\sum_{g=1}^{G} w_{x g} \operatorname{Be}\left(m ; \epsilon_{g}, \alpha_{g}\right)
$$

biologic cond $x=x_{t}$
Baseline: $B_{t}(y)=\sum_{j=1}^{J_{t}} v_{t j} B e\left(m_{i} \mid \eta_{t j}, \beta_{t j}\right)$.
$G_{0}=17$ normal samples, $\quad G_{1}=24$ tumor samples;
histogram of mass/charge ratios on grid of size $I=60,000$. Spectrum: $p_{t}(m)=p_{0 k} B_{t}(m)+\left(1-p_{0 k}\right) f_{t}(m)$
First Annual Conf on Proteomics \& Data Mining at Duke U.

Slide 23

Slide 26

Likelihood:

- $y_{t}(m)$ count of events at mass m with $p_{t}(m)$. empirical distr of n samples from p_{t}

$$
\log p(y \mid \theta)=\sum_{t=1}^{N} \sum_{i=1}^{I} y_{t}\left(m_{i}\right) \log p_{t}\left(m_{i}\right)
$$

(density estimation likelihood)

Wavelet-based smoothing. Morris et al. (2005
Biometrics): represent spectra in wavelet basis \rightarrow dimension reduction and convenient smoothing.

3.3 Results

Slide 27

3.2 Model

Slide 24

A Mixture of Beta Model for Protein Mass/charge Spectra with Kim-Anh Do, Keith Baggerly and Raj Bandyopadhyay

Data: spectrum $=$ histogram $y_{t}(m)$ of observed counts, sample t, mass/charge m
Parameter: $p_{t}\left(m_{i}\right)=$ frequency of m / z ratio m_{i}.
Goal: Decompose p_{t} into background B_{t} and protein peaks $E\left[f_{t}(m) \mid Y, x_{t}=x\right]$. Estimated spectrum for normal and f_{t}.

Estimated Spectra

$\begin{array}{cc}\text { (a) } E\left[f_{t}(\cdot) \mid Y\right], & \text { (b) } E\left[f_{t}(\cdot) \mid Y\right], \\ \text { normal } x_{t}=0 & \text { tumor } x_{t}=1\end{array}$ tumor samples.

- Background: detector noise, protein fragments, Slide 28 matrix ...
- Protein peaks: each protein with m / z ratio m plus Prob Model on f_{t} : noise due to initial velocity dist \& mmt error \rightarrow peak centered around m.

Prob model for f_{t} and $B_{t} \rightarrow$

- inference on peaks,
- expression of peaks across conditions.

(a) $f_{t} \sim p\left[f_{t}(\cdot) \mid Y\right]$,
normal $x_{t}=1$

Random draws from the posterior on the unknown spectra.

Differential expression
Marginal posterior probabilities of differential expr.

Slide 30

Results - MCMC

ϵ_{g} vs. iteration
J vs. iteration
Some aspects of the posterior simulation

Serial Analysis of Gene Expression (SAGE)

Data: tags counts $y_{g}, g=1, \ldots, G_{0}$
Censoring: tags with $y_{g}=0$ are not recorded
Skewed data: few tags with large count; many with small counts

Zhang et al. (1997, Science).

Slide 33

Mixture of two Dirichlets: Morris et al. (2003
Biometrics),

- Multinomial sampling $y \sim M n(\pi ; n)$
- (latent) split into scarce and abundant tags
- Dirichlet prior for for scarce and abundant tag frequencies

3.4 Limitations ...

Slide 31

Limitations and Extensions
Sampling model: Used $w_{x g}$, same for all samples with same biol condition x. Additional variability is reasonable.
Prior: Peaks for higher mass proteins are wider. Could use this in prior.
Protein identity: Need to match different ϵ_{g} with actual proteins (mode matching problem).
Design: Usually more than two samples.
Likelihood: Neither is perfect:

- Density estimation: y_{t} as empirical distribution of a random sample from p_{t}
- Regression: $y_{t}=p_{t}+$ residual.

4.2 Model

Slide 34

A DP Mixture Model for SAGE Data
Goal: generalize mix of two Dirichlet...
First: replace multinomial by Poisson sampling
Sampling: Indep Poisson $y_{g} \sim \operatorname{Poi}\left(\lambda_{g}\right)$
Prior: $\lambda_{g} \sim F$
Hyperprior: $F \sim D P\left(F^{\star}, M\right)$

Slide 35

DP Mixture Model
Model: $\quad y_{g} \sim \int \operatorname{Poi}\left(y_{g} ; \lambda_{g}\right) d F\left(\lambda_{g}\right)$ and $F \sim D P\left(F^{\star}, M\right)$
Random partition: etc., as in the normal-normal DP mixture earlier

Conjugate DP mixture:

- Conjugate (Gamma) base measure.
- Marginalize w.r.t. λ^{*} to find $p(y \mid s)$
- easy MCMC

4.1 Intro

4.3 Posterior Inference

Slide 36

Posterior inference
$\bar{\lambda}_{i}$ vs. y_{i}

$$
p(L \mid \text { data })
$$

Slide 37

Posterior Random Measure

$$
E(F \mid \text { data }) \quad E(F \mid \text { data }), \lambda<100
$$

Slide 38

Summary

- NP Bayes to represent random distributions and functions for massive gene and protein expression data.
- If sample size $=$ number of genes, then we have ample data.
- Joint description of all uncertainties is important to address multiplicities
- We have only discussed two-group comparisons. Most experiments involve more complicated designs (ANOVA etc.)

