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This work presents a method for estimating trends of economic time series that allows 

the user to fix at the outset the desired percentage of smoothness for the trend. The 

calculations are based on the Hodrick and Prescott filter usually employed in business cycle 

analysis. The situation considered here is not related to that kind of analysis, but with 

describing the dynamic behavior of the series by way of a smooth curve. To apply the filter, 

the user requires to specify a smoothing constant that determines the dynamic behavior of 

the trend. A new method that formalizes the concept of trend smoothness is proposed here 

to choose that constant. Smoothness of the trend is measured in percentage terms with the 

aid of an index related to the underlying statistical model of the filter. Some empirical 

illustrations are provided using data on the Mexican economy with different frequencies of 

observation.  
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1. INTRODUCTION 

The concept of trend arises naturally when carrying out statistical or econometric 

analysis of economic time series. A reason for this is that the trend of a time series plays a 

descriptive role equivalent to that of a centrality measure of a data set, but the center of a 

time series behaves dynamically. Another reason is that very often the analyst wants to 

distinguish between short-term and long-term movements. In fact, the common notion of 

trend is that of an underlying component of the observed series that reflects its long-term 

behavior and evolves smoothly (see Maravall, 1993). Therefore, when dealing with 

trends it is natural to use the following unobserved component representation  
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    tηtτty +=    for   t = 1, ..., N,           (1) 

with  the observed value of the series under study at time t,  its trend component 

and  its complement, called the noise component. This representation does not 

necessarily indicate how the actual data were generated, but is a way to present the 

stylized facts referred to by the analysts and frequently observed by just plotting the data. 

The trend behavior can be represented through deterministic or stochastic models 

although, as Nelson and Kang (1981) showed, deterministic models tend to produce 

spurious results. Therefore, stochastic models are preferable. 

ty

tη

tτ

The need of estimating a trend may arise just for informative purposes. In that case, a 

simple graphical display of the data is useful to show the relevant patterns of the series, 

such as its trend. This idea is not new (see e.g. Deville and Malinvaud, 1983) and it has 

led, for instance, to present economic time series data adjusted for seasonality in a 

routinely manner. On the other hand, there is the need of eliminating the trend without 

affecting other components of the series, such as seasonality, cycles, etc. This need 

occurs when the analyst plans to carry out subsequent analyses on the detrended series. 

Some of those analyses typically include turning point forecasting and business cycle 

explanation. This paper is concerned with estimating trends for several series in a 

routinely manner and just for informative purposes, so that an easy-to-use method must 

be applied.  

This article is organized as follows. Section 2 presents the most common approaches 

employed up to date to represent trends of economic time series. Hodrick and Prescott’s 

(HP) filter is emphasized because it is considered a reasonable approach for estimating 

trends. Since the HP filter depends heavily on a smoothing parameter, Section 3 describes 

several procedures devised for choosing that parameter. Section 4 presents a new method 

for selecting the smoothing constant with quarterly series, in such a way that a desired 

percentage of trend smoothness can be fixed at the outset. Section 5 extends the 

applicability of this method to non-quarterly series. Both in Sections 4 and 5, some 

illustrative applications on actual data are presented. Section 6 concludes with some 

remarks. 
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2. TREND REPRESENTATION AND  ESTIMATION 

Maravall (1993) presented several approaches that lead to stochastic models 

generally used to represent trends of economic time series. They are based on: a) ARIMA 

(Auto-Regressive Integrated Moving Average) models; b) Structural Models, as those 

proposed by Harvey (1989); c) the X-11 Seasonal Adjustment procedure (Cleveland and 

Tiao, 1976); and d) the HP filter (see Hodrick and Prescott, 1997, originally appeared as a 

non-published manuscript in 1980). Those approaches yield similar model specifications 

in which the difference operator is applied twice to the trend component. The general 

model form employed is ∇ , where t)aBθBθ(1tτ
2

21
2 −−= ∇ = 1-B denotes the 

difference operator and B is the backshift operator such that BXt = Xt-1 for every variable 

X and subindex t. The parameters θ  and  are constant and {  is a white noise 

Gaussian process, i.e. it is a sequence of independent and identically distributed random 

errors with Normal distribution. 

1 2θ }ta

A filter is defined here by any operation on the observed series {y  that yields 

another series, which in the present case will be the estimated trend { . Since  is a 

random variable it would be preferable to call  its predictor rather than its estimator, 

nevertheless the usual terminology that refers to estimation instead of prediction, will be 

employed here. The approach to be used for estimating trends will be that of the HP filter, 

mainly because it does not require the application of a formal statistical model building 

process before estimating the trend, as it happens with the ARIMA and the Structural 

model-based approaches. Besides, the HP filter is easier to apply than a seasonal 

adjustment procedure and produces results that are equivalent to those obtained with any 

of the following three methods: (1) smoothing by Penalized Least Squares, (2) Kalman 

filtering with smoothing and (3) signal extraction via the Wiener – Kolmogorov filter. 

This fact has been shown by Gómez (1999), and by Young and Pedregal (1999). 

Knowing this result is useful to take advantage of the respective merits of each individual 

method. The monograph by Kaiser and Maravall (2001) exposes in detail the HP filtering 

methodology within the context of business cycle analysis. 

}t

}tτ̂ tτ

tτ̂
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The penalized approach that gives rise to the HP filter postulates that the trend must 

minimize the function 

∑ ∇+∑ −= ==
N

3t
2

t
2N

1t
2

tt )τ(λ)τy()λ(M           (2) 

where  is a constant that penalizes the lack of smoothness in the trend. By writing      

 and  it can be seen that as 

0>λ

−=
N

1t ty(∑= 2
t )τF ∑ ∇= =

N
3t

2
t

2 )τ(S 0→λ , the fit (F) of the 

trend to the data is emphasized over its smoothness (S), so that . The opposite 

occurs when λ , in which case the trend follows essentially the straight line model 

. Hence λ plays a very important role in deciding the smoothness of the trend. 

This method was proposed by Whittaker and Henderson in 1924 for graduating actuarial 

data, although an earlier application was made in 1867 by the Italian astronomer 

Schiaparelli (see Hodrick and Prescott, 1997). 

tytτ →

∞→

τ t
2∇ 0=

The minimization problem underlying the HP filter can be written in matrix notation 

as 

   ( ) ( ) ( ) ( ) ( )τττyτy
τ 22 K'Kλ'λMmin +−−= ,          (3) 

with  and , where K( )'y..., ,y N1=y ( 'τ..., ,τ N1=τ ) 2 is the (N-2)×N matrix given by 

   .         (4) 



















−

−
−

=

1210...00000
...

000001210
0000...00121

K 2

The solution can be obtained by taking the derivative of M(λ) with respect to τ, equating 

to zero the derivative evaluated at ττ ˆ=  and solving the resulting equation. Thus we get  

        ( ) y
1

2
'
2KλKIˆ

−
+N=τ .           (5) 

Since the second derivative of M(λ) evaluated at ττ ˆ=  is a symmetric positive definite 

matrix, it follows that (5) produces a minimum and therefore solves the problem. It 

should be noticed that in order to get τ̂ , an N×N matrix has to be inverted. This 

calculation may cause instability and lack of precision of the numerical solution when N 

is large. Thus, the penalized approach has the advantage of showing explicitly the roles 

played by λ, F and S, but it does not provide an efficient calculation tool for the trend.  
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The Kalman filter requires formulating a state space model as follows. The state and 

measurement equations are given by          

   t1ttt A wxx += − , ,           (6) tt
'
tt ηy += xc

with 

                     ,  ,
τ
τ

1t

t
t 








=

−
x

01
12

At 







= ( )01='

tc   and  ,         (7) 







=

0
ε t

tw

where εt and  are two independent zero-mean random errors, serially uncorrelated and 

identically distributed with 

tη

( ) 2
εt σεVar =  and ( ) 2

ηt σηVar = . Thus the state equation 

implies using the model  

t2t1tt ετ2ττ +−= −− .            (8) 

To equate the results of the Kalman filter with smoothing, with those obtained directly 

from (5) we should assume that  and σ . The numerical calculations required 

by the illustrative applications shown below were carried out with the RATS package 

Version 5 (see Doan, 2000).  

1σ2
ε = λ2

η =

The third equivalent method is known as the Wiener – Kolmogorov filter (see 

Whittle, 1983 for the stationary series case and Bell, 1984 for its extension to 

nonstationary series). This method also assumes that (1) holds and that the trend is linear. 

Then the estimated trend is given by the symmetric filter (see Young and Pedregal, 1999) 

tτ̂  =  {( ,         (9) t
2122

η
2
ε

2
η

2
ε y]})B1(B)1(/σσ/[)/σσ −−−+

where  is such that  for every variable X. The Wiener - Kolmogorov 

filter produces the estimator with minimum Mean Square Error (MSE) of {  if a 

complete realization (from  to 

1B−
1tt

1 XXB +
− =

−∞=t

}τ t

∞=t ) of the series {y  is available. In any other 

case the result should be considered only from a theoretical perspective, because its use in 

practice would require truncation at the extremes. 

}t

Equivalence of the previous three methods enables us to interpret the HP filter as a 

method that yields a feasible trend estimator produced by the Wiener – Kolmogorov 

filter, so that it has minimum MSE. Besides, the spectral analysis theory underlying that 

filter is also applicable to the HP filter and such measures as function gain and phase can 

 6



also be calculated with ease for the HP filter, as did Gómez (1999). There are some other 

alternative techniques for estimating or eliminating time series trends. For instance, 

Dagum and Luati (2004) employed a nonparametric approach to find an appropriate filter 

for performing analysis of the economic situation and detecting turning points. Another 

technique is that of Beveridge and Nelson (1981) which allows an analyst to decompose a 

nonstationary time series into permanent and transitory components. This method is 

based on an ARIMA representation of the observed series and does not necessarily 

produce a smooth permanent component that may be considered an estimate of the trend. 

The method based on the eventual forecast function of an ARIMA model can also be 

considered useful to estimate a trend (see Box, Pierce and Newbold, 1987). This method 

only makes use of data previous to time t for estimating the trend at t and therefore 

behaves like a filter without smoothing and it does not produce an estimate of the trend at 

the beginning of the series. Baxter and King (1999) designed band-pass filters that can be 

calculated as moving averages and that are appropriate for extracting some kind of trends 

defined by the frequencies that the filter allows to pass, so this technique is useful for 

carrying out business cycle analysis. Boone and Hall (1999) proposed an extension of the 

HP filter based on a state space model whose state equation generalizes the linear model. 

This proposal is useful to get a better statistical representation of the series and its trend, 

but becomes impractical for massive and repetitive application. Finally, the technique 

proposed by Kitagawa and Gersch (1996) produces a trend estimator that is supported by 

a Bayesian statistical argument and is intimately related to the HP filter, in the sense that 

both employ essentially the same equations. There are also several detractors of the HP 

filter when it is used for business cycle analysis. Harvey and Jaeger (1993), as well as 

Cogley and Nason (1995) and Park (1996)  are among them, because they found that the 

HP filter sometimes induce spurious cycles as those cited by Slutzky (1937). In contrast 

Pedersen (2001) argued that the main reason for getting spurious results is the very 

definition of a Slutzky effect employed and he showed that the HP filter, with an 

appropriate definition of the cycle, produces adequate results for business cycle analysis.  

The main focus of this paper lies on estimating trends for descriptive purposes via 

smooth curves produced by the HP filter. As a motivating example, Figure 1 presents 

some plots that allow comparison of the estimated trend for the quarterly seasonally 
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adjusted series of Mexico’s Gross Domestic Product (GDP). The data employed appear in 

the Appendix. This figure allows us to appreciate the results of the HP filter as compared 

with those produced by the seasonal adjustment program X-12-ARIMA. Plot (a) shows 

the estimated trend that comes out of the X-12-ARIMA package with the automatic 

options. Plot (b) presents the trend produced by the HP filter with the traditional value 

λ=1600, and plots (c) and (d) show the trend obtained with λ=1 and λ=199. Smoothness 

of the trend is very similar in cases (a) and (c), but it is substantially different in the other 

cases. Thus, in order to estimate the trend appropriately we have to choose the constant λ 

in an objective way. 
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Figure 1. Trend Estimation of Mexico’s GDP Quarterly Series, at 1993 Prices, Seasonally 

Adjusted with the X-12-ARIMA package. Trend obtained with: (a) automatic options of X-12-

ARIMA, (b) HP filter with λ = 1600, (c) HP filter with λ = 1 and (d) HP filter with λ = 199. 
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In closing this section, we should bear in mind that the trend component of an 

economic time series requires the use of , not of  for  in general, as one could 

think in order to make the trend specification more flexible. In particular using d=1 in a 

minimization problem of the function (2), gives rise to the Exponential Smoothing filter 

cited by King and Rebelo (1993). The HP filter is one of those filters that employ ∇ ; its 

original derivation as a Penalized Least Squares problem makes explicit the trade off 

between smoothness and fit when estimating the trend; it can be interpreted as an optimal 

statistical estimation method, in MSE sense; it may be calculated efficiently by means of 

Kalman filtering with smoothing; it has adequate properties in terms of spectral analysis; 

and to be able to apply it in practice we only require to fix the value of the smoothing 

parameter λ.  

2∇ d∇ 1d ≥

2

 

3. CHOOSING THE SMOOTHING CONSTANT 

In order to select the value of λ, Hodrick and Prescott (1997) tentatively assumed that 

 and η  were independent random variables identically distributed as  and 

, respectively. A usual application of the HP filter for business cycle analysis 

presumes that the observed series is expressed in logarithms, in which case ∇  can be 

interpreted as a growth rate. Therefore the change in the growth rate of the trend and the 

noise are supposed to be Gaussian white noise processes. In their original work,  Hodrick 

and Prescott decided a priori that the values 

t
2τ∇

σN(0,

t )σN(0, 2
ε

ty

)2
η

5ση =  and σ 1/8ε =  were appropriate for 

the quarterly macroeconomic US series  they were studying (for the period 1950 – 1979). 

Therefore, they decided to use . They also carried out a sensitivity 

analysis of their results with λ=400, λ=6400 and λ=∞. They concluded that only with 

λ=∞ the results changed in an important way, while the other two values produced 

basically the same measures of empirical regularity. Thus, λ=1600 became the traditional 

value for the smoothing constant when using the HP filter. 

1600/σσλ 2
ε

2
η ==

The HP filter keeps a strong resemblance with the cubic splines employed, for 

instance, in nonparametric regression. There, the trend depends on some independent 

variables, , and it is given by p1 x,...,x ( ) yτ -1
Np1 λX)(Ix,...,xˆ +=  where X is a matrix 
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that depends on the x’s. Thus, it is natural to think that the methods employed within the 

context of splines for choosing the smoothing constant, may also work for the HP filter. 

Lee (2003) compared the performance of several methods for selecting λ through Monte 

Carlo simulation and, for the purposes of the present work, it is important to notice the 

following aspects of such methods: their computational complexity; their lack of 

interpretation for the numerical value of λ; that they do not take into account the order of 

the data explicitly; and that, when there is a temporal ordering in the data, it does not 

correspond to a discrete and equally spaced ordering of the successive observations. For 

these reasons, such methods are not considered adequate to estimate trends of economic 

time series routinely and massively. 

A formal statistical approach must consider postulating a model, estimating its 

parameters (one of which is λ) and verifying that the underlying assumptions are not 

seriously violated. That is what Harvey and Jaeger (1993) proposed to do with a 

Structural time series model and using Maximum Likelihood estimation. Again, this 

procedure does not lend itself to massive applications. A more realistic approach is that of 

Kitagawa and Gersch (1996, chapter 4) who proposed to use model (1) with (8) and 

estimate λ by Maximum Likelihood. They admitted explicitly that the assumption 

 is incorrect because the true trend function is unknown, but they also reminded 

us that this is the same argument employed by Shiller in 1973, when he proposed what is 

known as the smoothness prior approach. 

tt
2 ετ =∇

The approach adopted by Young (1994), Pedersen (2001) and Kaiser and Maravall 

(2001) to select an appropriate value of the smoothing constant is based on the 

interpretation of the results produced by different choices of λ. They considered the 

effects of λ in the frequency domain and suggested criteria for choosing it appropriately, 

in the sense of allowing the HP filter to eliminate cycles whose periodicity is less than 

some value considered adequate for carrying out business cycle analysis. In particular, 

Kaiser and Maravall (2001, chapter 7) proposed to choose λ by fixing the length of the 

period over which the analyst wishes to measure cyclical activity. Thus for quarterly 

series they provided a table (Table 5.11) where the period in years is related to an 

approximate value of λ. 
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4. CHOOSING λ TO ACHIEVE SOME DESIRED SMOOTHNESS 

The method proposed here arises from an explicit statistical model which is 

employed in a tentative manner to arrive at expression (5), as in Hodrick and Prescott 

(1997) or Kitagawa and Gersch (1996). Thus, even though the assumptions may be 

empirically invalid, they are required for deriving the theoretical results. Thus let us 

suppose tentatively that (1) and (8) hold valid, with { }tη  and { }tε  mutually uncorrelated 

zero-mean white noises, with variances σ  and . Then it follows that  2
η

2
εσ

   ητy +=  with ( ) 0η =E  and ( ) N
2
ηIσVar =η              (10)  

and   

    with ετ =2K ( ) 0ε =E  and ( ) 2N
2
ε IσVar −=ε ,       (11) 

where K2 is given by (5). Since ( ) 0E =εη'  we get 

          with  and .       (12) 







−

+







=








ε

η
τ

0
y

2

N

K
I

 E 0=







− ε
η











=








− −2N

2
ε

N
2
η

Iσ0
0Iσ

Var 
ε

η

Therefore, Generalized Least Squares produces the minimum MSE linear estimator 

    τ̂ ( ) y2
η

1
2

'
2

2
εN

2
η σKKσIσ −−−− +=         (13) 

whose MSE matrix is given by  

     .       (14) 1
2

'
2

2
εN

2
η )KKσIσ()ˆVar(Γ −−− +== tτ

By looking at the precision matrix , we see that it is the sum of two precision 

matrices,  corresponding to model (10), and  associated with model (11). 

This fact was exploited by Guerrero, Juarez and Poncela (2001) within the context of 

actuarial graduation, to propose an index (originally employed by Theil in 1963), to 

measure the proportion of P in , where P and Q are N×N positive definite 

matrices. Such an index is given by 

1Γ−

1−

N
2
η Iσ−

2
'
2

2
ε KKσ−

Q)(P +

    ,               (15) /N]Q)tr[P(PQ)PΛ(P; 1−+=+

where tr(.) denotes trace of a matrix. This is a measure of relative precision that has the 

following properties: (i) it takes values between zero and one; (ii) it is invariant under 
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linear nonsingular transformations of the variable involved; (iii) it behaves linearly; and 

(iv) it is symmetric, in the sense that ( ) ( ) 1QPQ;ΛQPP;Λ =+++ . 

Thus, it is sensible to use (15) to quantify the proportion of precision attributable to 

the trend smoothness induced by model (11). Such an index of smoothness becomes  

       S(λ; N)  )Γ;KKΛ(σ 2
'
2

2
ε
−=

              (16) /N])KλKtr[(I1 1
2

'
2N

−+−=

with . This index depends only on the values λ and N, because  is fixed. It 

is clear that S(λ; N)→0 as λ  and  S(λ; N)→1 as 

2
ε

2
η /σσλ = 2K

0→ ∞→λ . Furthermore, if we express 

this index as a percentage, we can write S(λ; N)% or simply S% to interpret it as the 

percentage of smoothness achieved by the HP filter. Figure 2 allows us to appreciate the 

behavior of S(λ; N)%, for three different values of N and λ.  
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Figure 2. Behavior of S(λ; N)% for: (a) N=50, 100, 200, and (b) λ=400, 1600, 6400. 
 

It is interesting to see in Figure 2 (a) that S(λ; N)% grows very rapidly as λ gets 

larger until around λ=1000, then it grows very slowly, independently of the sample size. 

Similarly, Figure 2 (b) allows us to appreciate the effect of the sample size for fixed λ 

values (those employed by Hodrick and Prescott, 1997). In the three cases shown by each 

graph, the percentage of smoothness is greater than 90% even with a sample size as small 

as N=50, or a smoothing constant as small as λ=400. Discriminating among different λ 

values could be done in terms of the S% achieved for a fixed sample size. For instance, 

the traditional value employed with the HP filter for business cycle analysis produces the 
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following results: S(1600;50)%=92.4%, S(1600;100)%=93.4% and S(1600;200)=93.9%, 

in such a way that the percentage of smoothness achieved with λ=1600 fluctuates around 

93.2% for the sample sizes most commonly used with quarterly time series. Such a 

percentage of smoothness might be considered relatively high for descriptive purposes. 

This work proposes to estimate the trend of a quarterly economic time series with a 

given sample size N, by fixing the desired percentage of smoothness and then looking for 

the λ value that satisfies this criterion. Such a value for the smoothing constant must be 

employed with all the quarterly time series of the same size, in order to establish valid 

comparisons. The basis of this suggestion is similar to that underlying the interval 

estimation of a fixed parameter θ by means of an expression like , with se(  

the standard error of . In such a case, what we usually do is fixing the desired 

confidence level, instead of fixing the value of the constant k. By doing that we achieve a 

better interpretation of the interval and greater comparability with other intervals. 

Something similar happens if, rather than fixing the value of the smoothing constant 

arbitrarily, we fix the desired characteristic of the HP filter in terms of the percentage of 

smoothness. 

)θ̂se(kθ̂ ×± )θ̂

θ̂

In case we were interested in performing business cycle analysis we should bear in 

mind  Kaiser and Maravall’s (2001) results, which provide a sound basis for selecting the 

smoothing parameter in that context. On the other hand, when we intend to apply the HP 

filter for descriptive purposes of the series, the recommendation is to fix the desired 

percentage of smoothness S% and derive from it the corresponding λ value. Since solving 

expression (16) for λ, given fixed values of N and S% is not straightforward, it is 

convenient to refer to Table 1. There we can see the λ values that correspond to some 

selected percentages of smoothness for different sample sizes.  
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Table 1. Values of λ as a Function of Sample Size N and  

Percentage of Smoothness S% (Quarterly Series) 

N Percentage of smoothness  S% 
 60% 65% 70% 75% 80% 85% 90% 92.5% 95% 
4 2.98 5.60 13.7 --- --- --- --- --- --- 
8 1.61 2.88 5.9 14.3 42 197 --- --- --- 
12 1.30 2.25 4.3 9.6 27 116 977 --- --- 
16 1.18 2.00 3.7 8.0 21 83 641 3059 --- 
20 1.12 1.87 3.4 7.2 19 68 511 2126 --- 
24 1.08 1.79 3.3 6.7 17 60 410 1803 15396
28 1.05 1.73 3.1 6.4 16 55 352 1506 11481
32 1.03 1.69 3.0 6.2 15 51 317 1281 10128
36 1.01 1.66 3.0 6.0 15 49 292 1136 9080 
40 1.00 1.64 2.9 5.9 14 47 275 1039 8047 
44 0.99 1.62 2.9 5.8 14 45 261 968 7138 
48 0.98 1.60 2.9 5.7 14 44 250 913 6439 
52 0.97 1.59 2.8 5.6 13 43 242 869 5915 
56 0.97 1.58 2.8 5.6 13 42 234 834 5522 
60 0.96 1.57 2.8 5.6 13 42 229 805 5217 
64 0.96 1.56 2.8 5.5 13 41 224 781 4966 
68 0.96 1.56 2.7 5.5 13 41 219 760 4758 
72 0.95 1.55 2.7 5.4 13 40 215 742 4580 
76 0.95 1.54 2.7 5.4 13 40 212 726 4427 
80 0.95 1.54 2.7 5.4 13 39 209 712 4296 
84 0.94 1.53 2.7 5.3 13 39 207 700 4184 
88 0.94 1.53 2.7 5.3 12 39 204 690 4082 
92 0.94 1.53 2.7 5.3 12 39 202 680 3991 
96 0.94 1.52 2.7 5.3 12 38 200 671 3914 
100 0.94 1.52 2.7 5.3 12 38 199 663 3842 

NOTE: Values calculated numerically by solving expression (16) for λ, given S% and N. ---  Denotes 
an unreliable value. 

 

In order to simplify the selection of λ in practical applications, a parsimonious 

function of N that would provide a good fit to the values in Table 1 was searched for by 

fitting several regression models for each S% value. There were some particularly best 

fitting models (in the sense of yielding higher R2 coefficients) for some individual S% 

values, nevertheless a generic form was preferred for all the percentages of smoothness 

considered. The estimation results of the best generic fitting model appear in Table 2, 

where we can see the model form as well as the corresponding R2 coefficients, which are 

all very close to unity. 
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Table 2.  Estimation Results of Fitting a Generic Model for  

Relating λ with N and S% (Quarterly Series) 

Model form: log(λ) = b0 + b1/N 

S% b0 b1 R2 

60% -0.118673 4.785972 0.9993 

65% 0.359485 5.461539 0.9997 

70% 0.905558 6.809808 0.9994 

75% 1.565911 8.499703 0.9974 

80% 2.397834 10.680865 0.9993 

85% 3.482772 14.952133 0.9986 

90% 5.065726 22.265061 0.9985 

92.5% 6.199961 29.844806 0.9976 

95% 7.818861 44.597357 0.9951 

 

In order to carry out business cycle analysis, the HP filter must be applied to 

deseasonalized series, to avoid the confusion of cyclical movements with seasonal 

fluctuations. When the HP filter is used as a descriptive device to estimate the trend, the 

series under consideration might or might not be previously deseasonalized, because the 

resulting trend will not be affected by seasonal fluctuations, when the desired percentage 

of smoothness is at least 80%. This is guaranteed by Kaiser and Maravall’s (2001) results 

which indicate that a smoothing constant λ≥9 is big enough to cancel out all those 

fluctuations whose frequency is less than two years, which obviously include the seasonal 

ones. Then, by looking at Table 1 we can see that λ≥9 produces percentages of 

smoothness close to 80%.  

As an illustrative application of the previous results let us consider the quarterly GDP 

series shown in Figure 1. The sample period runs from 1980:01 to 2004:01, so that N=97. 

If the desired percentage of smoothness is S%=90%, the corresponding smoothing 

constant is obtained from Table 2 and becomes λ=199. In that case we get plot (d) of 

Figure 1. When the smoothing constant is λ=1, we get plot (c) of that figure and the 

percentage of smoothness achieved is 60.7%, while λ=1600 produces 93.9% smoothness. 

It should be mentioned that in these cases, the HP filter was applied to the seasonally 

adjusted GDP expressed in logarithms. Afterwards, the resulting trend was exponentiated 
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to bring it back to the original scale of GDP, expressed in pesos at 1993 value. On the 

other hand, in Figure 3 we can see the trends produced by the HP filter applied directly to 

the GDP series (without using logarithms nor seasonal adjustment). Two different 

percentages of smoothness were used for the trend, namely S%=90% and S%=80%.  
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Figure 3. Trend Estimation of Mexico’s Quarterly GDP, Unadjusted for Seasonality. With 

percentage of smoothness: (a) S%=90% and (b) S%=80%. 
 

By comparing the trend shown in Figure 3 (a) with that of Figure 1 (d), both of 

which achieve 90% smoothness, we corroborate empirically the fact that seasonally 

adjusting a series does not affect trend estimation, as long as the percentage of 

smoothness is 80% or higher. Now, by looking at Figure 3 we can appreciate that the 

trend in (a) reacts more slowly to unexpected fluctuations in the series than in (b). 

Therefore the trend in (a) may be considered more conservative than that in (b). This kind 

of facts should be taken into account when deciding an appropriate percentage of 

smoothness for the trend. Furthermore, the degree of smoothness is especially relevant 

when there is a need for extrapolating the trend. In that situation, the most recent values 

of the observed series may be unduly affected by local fluctuations and mislead about the 

future path of the trend. This can be appreciated in the extremes of the trends shown by 

plots (a) and (b) in Figure 3. In fact, were we interested in extrapolating the trend of the 

series, we would use model (8) to do it. That is, we would employ the expression 

 for h=1, 2, ... which makes use of only the last two estimated 

trend values (  and ) and then it follows its own linear dynamics. 

2-hN1hNhN τ̂τ̂2τ̂ +−++ −=

1Nτ̂ − τ̂N
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5. SELECTION OF λ FOR NON-QUARTERLY SERIES  

When the time series under study is non-quarterly, the λ values shown in Tables 1 

and 2 are not applicable. To see why this is so, let us suppose that the observation period 

covers years 1999 through 2003. That means there are 20 quarterly data, 60 monthly data, 

or only 5 yearly data, depending on the frequency of observation of the series. Therefore, 

although the long-term behavior of the series must be essentially the same in the 

quarterly, monthly or yearly data, Table 2 would lead us to select different λ values for 

the same S% for each of those series. The problem would arise if we do not take into 

account that series with lower frequencies of observation are related to those with higher 

frequency by means of some type of aggregation mechanism. This fact was realized by 

Maravall and del Rio (2001), who proposed four different solutions to find λ values 

capable of producing equivalent results on series with different periodicities. They 

preferred to choose λ in such a way as to preserve the period of the cycle for which the 

HP filter gain is 0.5. This choice is consistent with the proposal of Kaiser and Maravall 

(2001), when the objective of using the HP filter is to carry out business cycle analysis. 

In the present case we should choose the smoothing constant for non-quarterly series 

in such a way that it yields an equivalent percentage smoothness as the λ value that 

corresponds to the quarterly series. Therefore, we require to decide the λ value on the 

basis of the very nature of the non-quarterly series. To that end we must consider the type 

of operation that lies behind the aggregation employed to obtain the lower frequency 

series { , say a quarterly series, from the higher frequency series { , say a monthly 

series. The aggregation is assumed to be of the form 

}y*
T }yt

∑
=

+−=
k

1j
j1)k(Tj

*
T ycy          (17) 

where k is the number of observations  between two successive observations . For 

instance, there are  k=3 monthly observations in a quarter. The  are constants that 

define the type of aggregation, so that 

ty

1

*
Ty

s'c j

1c...c k ===  are used to aggregate a flow series, 

 are used when working with an index or an annualized flow series (in 

which case we will also say that it is a flow series). When c

1/kc...c k1 ===

1 = 1,  or 0c...2 ==c k =
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0c...c 1k1 === −

0)'E( =∗∗ηε

*2
η

*2
ε0 6σσΓ +=

,  we are dealing with a stock series, in which case the aggregated 

series is said to be generated by systematic sampling. 

1ck =

*y

2K

1 4Γ −=

k
k B1−=∇

*
T

2 Sy =∇

∑= ∞
−∞=j

j
jBγ)γ(B

kt Sε +

k
2
kk S∇2

ε
3
k

3
k σSS)γ(B +=

The underlying statistical model for the HP filter to be applied to the aggregated data 

is of the same form as (10) - (11), that is  

     with  and        (18) ** ητ += 0=)E( *η n
*2
η

* Iσ)Var( =η

     with  and        (19) ∗∗ = ετ 0=∗ )E(ε 2n
*2
ε Iσ)Var( −

∗ =ε

with , where the star denotes an aggregated variable. As before, the trend 

estimator becomes 

    ,        (20) *y2*
η

1
2

'
2

2*
εn

2*
η σ)KKσIσ(ˆ −−−−∗ +=τ

where n=[N/k] and [x] denotes the integer part of a real number x. Even though 

expressions (18) – (20) for the aggregated series are similar to their counterparts for the 

disaggregated series, the HP filter does not preserve itself under aggregation. That is, if 

we aggregate the components {  and {  we do not get {  and {  which are 

obtained directly from the aggregated series (see Maravall and del Rio, 2001). However, 

it is possible to find a  λ

}τ̂ t }η̂ t }τ̂*
T }η̂*

T

* value for the aggregated series that yields results equivalent to 

those produced by λ for the disaggregated series, in the sense of percent smoothness. 

To obtain equivalent λ values, we must equate the underlying models of the HP filter 

for the aggregated and disaggregated series. That is, since the aggregated model is 

          ,         (21) *
T

2*
T

*
T

2 ηεy ∇+=∇

i.e. an IMA(2,2) model, it follows that its variance and autocovariances are given by 

,   and  . On the other hand, by aggregating the 

disaggregated model and using the fact that 

*2
ησ

*2
η2 σΓ =

k kS∇=∇ , where S  and 

, we get the following model (see Maravall and del Rio, 2001 for details) 

1k
k B...B1 −+++=

t
2
k

3
k η∇  for flows  and   for stocks.      (22) t

2
kt

2
k

*
T

2 ηεSy ∇+=∇

The Autocovariance Generating Function (AGF) of the disaggregated series, 

, is given by 

2
η

2
kσS ∇  for flows and 2

η
2
k

2
k

2
ε

2
k

2
k σσSSγ(B) ∇∇+=  for stocks   (23) 
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with 1k1
k B...B1S +−− +++=  and k

k B1 −−=∇

2
ε 8σ126σ +=

2
ε6 3σγ +=

2
η

2
ε 6σ19σ +=

0

. For instance, for k=3 and a flow series 

we obtain , , , , 

, , , ,  and  for 

. While for a stock series , , , , 

, ,  and 

2
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=  for . The values of σ , ,  and  that 

make equivalent the results of the two HP filters are obtained by equating the 

autocovariances ,  and  to ,   and  . This amounts to asking that the 

following system of equations holds true 
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where  and a  are the coefficients of B  and  in the polynomial  k21,a,a k11, k31,  ,0 kB 2kB

3
k

3
k SS  for a flow series, or in the polynomial 2

k
2
k SS  for a stock series. In a similar fashion, 

  and a  are the coefficients of  and  in the polynomial ,a k12, k22,a k32,  ,0 BB k 2kB

2
kkS ∇2

kkS ∇  if the series is of flows, or in the polynomial 2
k

2
k ∇∇  if the series is of stocks. 

Now, by algebraic manipulation it can be shown that 

     )BB()BB(46 2k2kkk
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where  is a symmetric polynomial in B and B)B(B,P 1
k

− -1 that does not contain powers 

of type Bik for i=0, 1, 2. Therefore, we obtain a 6kk12, = , 4ka k22,   −= and  for 

flows, and a , and 

ka k32, =

6k12, =   1a k32,4a k22, −= =  for stocks. The elements   and 

 are coefficients of B  and B  in the polynomials associated to  in the 

AGF. These elements are shown in Table 3 for some values of k considered of practical 

relevance. 

ka , a k21,

2
εσ
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k
k31,a  ,0 B 2k
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Table 3.  Coefficients of the Polynomials Associated to the Variance   in γ(B) 2
εσ

k  Flows   Stocks  

 k11,a  k21,a  k31,a  k11,a  k21,a  k31,a  

2 20 6 0 6 1 0 

3 141 50 1 19 4 0 

4 580 216 6 44 10 0 

5 1751 666 21 85 20 0 

6 4332 1666 56 146 35 0 

7 9331 3612 126 231 56 0 

12 137292 53768 2002 1156 286 0 

13 204763 80262 3003 1469 364 0 

 

The linear system (24) has only two unknowns (either  and σ , if σ  and  are 

given, or vice-versa). Therefore it does not have an exact solution. Nonetheless, as in  

Maravall and del Rio (2001) we can get an approximate solution by minimizing the sum 

of squares SC .  That is, if we fix the values  and σ  we 

can find the values σ  and  that minimize SC

2
εσ

2
η

*2
ε =

*2
ε

*2
ησ

*
kλ=∑ −= =

2
0j

2
jkjk )γΓ(

2
εˆ 2

ησ̂

1σ *2
η

k. To this end we may use standard 

calculus (see the Appendix) to obtain the solution  

)x/(53x)6x53a(σ̂ 2
010k11,

2
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flowsfor 

      
λ)x53x()/ax(6x
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k
2
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*
k

2
01k11,012

η


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=       (27) 

with  and . Table 4 presents the values 

 that come out of (27) for some selected values of k. For instance, k=3 serves to 

relate quarterly data to monthly data; with k=5, 6 or 7 we can relate weekly data to daily 

data (with 5, 6 or 7 days per week); and k=13 is useful to relate quarterly data to weekly 

data. 

k31,k21,k11,0 a4a6ax +−=

2
ε

2
η σ̂/σ̂

2
k31,

2
k21,

2
k11,1 aaax ++=

λ =
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Table 4.  Values of λ Equivalent to , for Selected Values of k *
kλ

k Flows Stocks 

3 3.9975 + 71.2556  *
3λ 0.9547 + 24.7661  *

3λ

5 31.9644 + 544.4521  *
5λ 4.7792 + 113.8831  *

5λ

6 66.6390 + 1127.0891  *
6λ 8.3654 + 196.5614  *

6λ

7 123.8457 + 2085.9705  *
7λ 13.3865 + 311.9137  *

7λ

13 1482.0110 + 24764.5972  *
13λ 87.0343 + 1995.1365  *

13λ

 

When we need to find the smoothing constant for a lower frequency series, 

equivalent to the value  corresponding to a higher frequency series, we can use again 

the idea of minimizing the sum of squares SC . All we need to do 

now is fixing the values  and  to look for σ  and σ  that minimize SC

kλ

σ2
ε

∑ −= =
2

0j
2

jkjk )γΓ(

*2
εˆ *2

ηˆ1= k
2
η λσ = k. 

In such a case, the solution becomes 

)/174a(aλ)/174a(aσ̂ k22,k32,kk21,k31,
*2
η −+−=         

*2
ηkk12,k11,

*2
ε σ̂6λaaσ̂ −+= .         (28) 

For instance, with k=4 we get: λ*=-0.057170+0.004531λ4 for a flow series and 

λ*=0.040486+0.017206λ4 for a stock series. With these values we can relate the 

smoothness of a quarterly series with that of a yearly series. It should be noticed that 

these formulas differ from those given by Table 4 when we solve for the smoothing 

constant for the aggregated series ( =-0.057919+0.004461λ for flows and =-

0.040879+0.017114λ for stocks) since the solution of system (24) is not exact. Therefore 

the results in Table 4 should only be used to get equivalent λ values for higher frequency 

data from those of lower frequency data and (28) should be used otherwise.  

*
4λ

*
4λ

The proposed method is now applied to Mexico’s monthly GDP series as an 

illustrative application. To get the λ value equivalent to the constant  employed with 

the quarterly series, with a sample period covering 1980:01 to 2004:03, we start by 

noticing that the N=291 months of data are equivalent n=97 quarters and that we are 

*
3λ
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dealing with a flow series. Hence, the formula to use is λ=3.9975+71.2556 λ , in such a 

way that to attain S%=90% we require =199.38 (see Table 2) and to attain S%=80% 

the value has to be =12.28. These constants yield the equivalent values for the monthly 

series λ=14212 and λ=879, respectively. The trends produced by the HP filter are shown 

in Figure 4. It is interesting to compare the plots in this figure with those in Figure 3. By 

doing that we can conclude that the trends with the same percentage of smoothness have 

essentially the same dynamic behavior, no matter what the periodicity of observation of 

the data is. 
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Figure 4. Mexico’s Monthly GDP Series and its Trend. With percentage of smoothness: (a) 

S%=90% and (b) S%=80%. 

 

The following illustrative example makes use of the yearly GDP series. In this case 

we have n=24 whole years (1980 - 2003), then the number of quarters becomes N=96 and 

the smoothing constants corresponding to S%= 90% and S%=80% are λ4=199.86 and 

λ4=12.29. By employing the relation λ*=-0.057170+0.004531λ4 we get the values 

λ*=0.8484 and λ*=-0.0015≈0.00001 (since λ has to be positive) for the respective desired 

percentages of smoothness. Those values produced the trends shown in Figure 5. There, 

we can appreciate again that the trends with the same percentage of smoothness behave 

essentially the same, independently of the frequency of observation of the series. 
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Figure 5. Mexico’s Yearly GDP Series and its Trend. With percentage of smoothness: (a) 

S%=90% and (b) S%=80%. 

 

A final illustrative example considers the daily Exchange Rate (Pesos/US Dollar) 

series.  The sample period runs from  July 1, 1999 through September 6, 2004. Therefore 

we have N=1306 working days, corresponding to n=20 whole quarters of a stock series. 

To achieve percentages of smoothness S%=90% and S%=80% in the quarterly series we 

should use =482.50 and λ =18.76 respectively, as indicated by Table 2. Then, to 

calculate the equivalent weekly constant we use expression λ=87.0343+1995.1365  to 

obtain λ=962739 and λ=37521, respectively. Since the data correspond to a 5 day week, 

these values now play the roles of λ  to get the equivalent constants for the daily series, 

by means of λ=4.7792+113.8831 . Hence, the required values for the daily series 

become λ=109639660 and λ=4273061. The resulting estimated trends produced by the 

HP filter for the daily Exchange Rate series are shown in Figure 6. 
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6. FINAL REMARKS 

The need of estimating trends for economic time series may arise for several reasons, 

one of which is the description of the series by way of a smooth curve that represents its 

mean value dynamically. In that case, the method suggested here is the HP filter, because 

of its statistical basis and practical interpretation. The numerical computations involved 

can be done easily by Kalman filtering and the only remaining problem to apply the HP 

filter in practice was specifying the smoothing constant. This paper presents a solution to 
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this problem that allows us to determine such a constant as a function of the desired 

percentage of smoothness of the trend. 
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Figure 6. Daily Exchange Rate (Peso/US Dollar) and its Estimated Trend. With percentage of 

smoothness: (a) S%=90% and (b) S%=80%. 

 

The concept of trend smoothness is formalized here by associating it to the relative 

precision attributable to the smoothness component of the statistical model underlying the 

HP filter. Therefore, we can measure trend smoothness by way of an index that involves 

the smoothing constant of the HP filter. That enables us to choose the smoothing constant 

by fixing a desired percentage of smoothness for the trend at the outset. By being able to 

fix the percentage of smoothness of the trend for every series under study, we can make 

valid comparisons between trends for different series with the same percentage of 

smoothness. Similarly we can compare trends with different percentages of smoothness 

for the same series.  

The procedure for choosing the smoothing constant arises naturally for quarterly 

series since the HP filter was proposed originally for that kind of series. Nevertheless, the 

procedure is generalized here to other type of data frequencies. To do that we require 

knowing whether the series consists of flows or stocks. Then, some formulas are provided 

to relate the smoothing constants for series with different frequencies of observation, so 

that they produce trends with the same percentage of smoothness. The values required for 

applying the procedure with quarterly or non-quarterly series are provided in some tables 

in order to facilitate its use. Several illustrative examples are presented for both quarterly 
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and non-quarterly series. It is clear that this is an easy-to-use procedure, whose results are 

very reasonable and justify its empirical application. If this procedure is considered for 

massive and routine application on several time series, e.g. at an official statistical 

agency, it is recommended that a pilot study be carried out in order to decide the 

appropriate percentage of smoothness (say 90% or 80%) either for all the series under 

consideration or for groups of series. 
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APPENDIX A: APPROXIMATE SOLUTION FOR EQUIVALENT VARIANCES 

The sum of squares involved is 
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Then, by evaluating these on the optimal values  and σ , equating to zero and solving 2
εσ̂

2
ηˆ

the resulting equations, we get expressions (27). 

 

APPENDIX B. QUARTERLY GDP DATA 

 (ORIGINAL AND SEASONALLY ADJUSTED)  

Quarter GDP 

X-12-

ARIMA Quarter GDP 

X-12-

ARIMA Quarter GDP 

X-12-

ARIMA 

1980 I 938135 925194 1989 I 1068783 1071763 1998 I 1431862 1434478 
 II 935461 935822  II 1111605 1087027  II 1455594 1447484 
 III 925245 953337  III 1050907 1095429  III 1412882 1455247 
 IV 995587 979721  IV 1111908 1101880  IV 1496902 1459603 
1981 I 1015503 1005851 1990 I 1115170 1115518 1999 I 1460942 1468982 
 II 1031141 1024350  II 1156562 1134458  II 1504375 1490807 
 III 1004063 1039941  III 1102849 1151058  III 1473442 1514324 
 IV 1067221 1044995  IV 1193417 1162646  IV 1575240 1542587 
1982 I 1046417 1039734 1991 I 1157545 1171418 2000 I 1569060 1574738 
 II 1036685 1032007  II 1221764 1180083  II 1614588 1600933 
 III 996733 1023675  III 1140122 1192505  III 1576881 1612036 
 IV 1016646 1006702  IV 1241096 1204600  IV 1648861 1614851 
1983 I 1004290 990674 1992 I 1211845 1217541 2001 I 1599979 1609591 
 II 986440 982735  II 1249936 1230998  II 1617803 1602359 
 III 955682 983353  III 1191296 1239700  III 1556932 1595571 
 IV 1007248 1000269  IV 1276025 1243618  IV 1626989 1592954 
1984 I 1037162 1015389 1993 I 1248725 1245689 2002 I 1561778 1597256 
 II 1015362 1023847  II 1260352 1251571  II 1648074 1609981 
 III 1000452 1024586  III 1211580 1258038  III 1581356 1620765 
 IV 1035536 1032083  IV 1304127 1265441  IV 1657089 1620816 
1985 I 1054820 1038124 1994 I 1277838 1284699 2003 I 1601329 1620316 
 II 1052454 1044371  II 1331435 1312020  II 1649944 1624718 
 III 1012227 1046652  III 1267386 1327279  III 1591019 1635122 
 IV 1058455 1039653  IV 1372142 1314911  IV 1690011 1653443 
1986 I 1023030 1027117 1995 I 1272242 1273114 2004 I 1661053 1677559 
 II 1047878 1016757  II 1209053 1225767     
 III 964237 1005708  III 1165580 1213029     
 IV 1014174 998515  IV 1275557 1237444    
1987 I 1012635 1011103 1996 I 1273078 1266122    
 II 1050061 1025848  II 1287401 1282625     
 III 992042 1036854  III 1248665 1298697     
 IV 1064328 1041439  IV 1366292 1318910     
1988 I 1038644 1040885 1997 I 1331527 1342915     
 II 1061388 1036158  II 1395247 1369714     
 III 993274 1040351  III 1342048 1394358     
 IV 1078618 1053788  IV 1457278 1414893    

NOTE: Millions of pesos at 1993 value. Source: INEGI, Sistema de Cuentas Nacionales, 
http://www.inegi.gob.mx  X-12-ARIMA indicates deseasonalized data with that procedure. 
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