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1. INTRODUCTION 
 
The many uncertainties involved in the payment of losses makes the estimation of the 
required reserves difficult. Yet, some of the existing methods, such as the popular chain-
ladder, are simple to apply. However, it has become evident that there is a need for better 
ways not only to estimate the reserves, but also to obtain some measures of their 
variability. This has led to the development of stochastic reserving models, Taylor 
(2000), Kaas et. al. (2001), England and Verrall (2002), England (2002), de Alba 
(2002b). 

The chain-ladder is used as a benchmark in several of the references mentioned above, 
due to its generalized use and ease of application, see also Hess and Schmidt (2002). This 
facilitates comparison between methods. However, in this paper our aim is not to develop 
Bayesian methods that provide results close to those of the chain-ladder method. Rather, 
we aim at developing ‘objective’ Bayesian methods using some common assumptions 
and to use the resulting predictive distributions to estimate loss reserves, allowing for the 
possibility of negative values in the data. 

In this paper we present an application of Bayesian forecasting methods to the estimation 
of reserves for outstanding claims. We assume that the time (number of periods) it takes 
for the claims to be completely paid is fixed and known, that payments are made annually 
and that the development of partial payments follows a stable pay-off pattern. This is in 
agreement with many existing models for claims reserving in non-life (general) insurance 
that assume, explicitly or implicitly, that the proportion of claim payments, payable in the 
j-th development period, is the same for all periods of origin, Hess and Schmidt (2002). 
The results are applicable to any frequency of claim payments (years, quarters, etc.) and 
length of pay-off' period. We present a Bayesian approach to forecasting total aggregate 
claims given data on some development years for several occurrence years. Essentially 
the data would correspond to a typical run-off triangle used in loss reserving. We use the 
term claims reserving in its most general sense.  In particular we are concerned with the 
situation when there are negative values in the development triangle of the incremental 
claim amounts. 

We use standard notation, so that  = incremental number (or amount) of events 
(claims) in the t-th development year corresponding to year of origin (or accident year) i. 
Thus  where s = maximum number of years (sub periods) it 
takes to completely pay out the total number (or amount) of claims corresponding to a 
given exposure year. In this paper we do not assume  for all i = 1,…,k  and t = 
1,…,s. Most claims reserving methods usually assume that s=k and that we know the 
values for . The known values are presented in the form of a run-off 
triangle, Table 1. 
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Table 1 

Year of     Development Year   
origin 1 2 ...... t ... k-1 k 

1 Z11 Z12 ... Z1t  Z1,k-1 Z1k 
2 Z21 Z22 ... Z2t  Z2,k-1 - 
3 Z31 Z32 ... Z3t  -  
:      - - 

k-1 Zk-1,1 Zk-1,2    - - 
k Zk1 -     - 

 
Negative incremental values can arise in the run-off triangle as a result of salvage 
recoveries, payments from third parties, total or partial cancellation of outstanding 
claims, due to initial over-estimation of the loss or to possible favorable jury decision in 
favor of the insurer, rejection by the insurer, or just plain errors. It could be argued that 
the problem is more with the data than with the methods. Typically these negative values 
will be the Hence the ideal situation would be to correct the data before applying claims 
reserving methods so as to eliminate any negative values. In this respect de Alba and 
Bonilla (2002) provide a list of potential adjustments frequently used in practice. 
Although the estimation procedures can be applied both to incurred (paid losses and 
aggregate case estimates combined) or paid claims, it is probably better to use the latter, 
since negative values are less likely to appear, England and Verrall (2002). That is 
because case estimates are set individually and often tend to be conservative, resulting in 
over-estimation in the aggregate. This leads to negative incremental amounts in the later 
stages of development. Also, sometimes the data should be adjusted before applying 
these methods to satisfy regulatory requirements. However, corrections are not always 
possible and it is convenient to have options available to work with the negative values. 

We present a full Bayesian model. It is extended from de Alba (2002b) to consider 
negative incremental values. The model presented here allows the actuary to provide 
point estimates and measures of dispersion, as well as the complete distribution for the 
reserves.  

The paper is structured as follows. Section 2 gives a brief description of previous results 
relevant to our approach. Section 3 introduces some Bayesian concepts and their 
applications in actuarial science. Section 4 describes a Bayesian model for claim amounts 
in the presence of negative values. Section 5 describes the prior distributions used in the 
model. In Section 6 we describe how to use our model to estimate reserves and its 
implementation for Markov chain Monte Carlo is given in Section 7. An example is 
given in Section 8. All models are presented only in discrete time. 

2. BACKGROUND 
 
 For a comprehensive, although not exhaustive, review of existing stochastic methods that 
can handle the existence of negative incremental values see England and Verrall (2002). 
Although they provide some Bayesian results, most of the methods presented there 
approach the problem from the point of view of frequentist or classical statistics and in 
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the framework of generalized linear models (GLM).  They provide predictions and 
prediction errors for the different methods discussed and show how the predictive 
distributions may be obtained by bootstrapping and Monte Carlo methods. Among those 
that can handle negative values, from the classical viewpoint, they mainly consider three 
models: an (over-dispersed) Poisson, a negative binomial and a Normal approximation to 
the latter. They also mention the standard log-Normal model which was introduced by 
Kremer (1982) and analyzed in detail in Verrall (1991).  

England and Verrall (2002) emphasize “that some of the methods presented … are better 
suited for modeling paid amounts or number of claims, since incurred data, which may 
include over-estimation of case estimates, leading to negative incremental values, may 
cause problems.” After describing the stochastic basis for the chain-ladder method, they 
indicate that “the Normal model has the advantage that it can produce estimates for a 
wide range of data sets, and is less affected by the presence of negatives” 

 
There are several stochastic formulations of the chain-ladder method, Hess and Schmidt 
(2002). The stochastic version of the chain-ladder method that can handle some negative 
values is defined as a generalized linear model (GLM) with an over-dispersed Poisson 
distribution, Renshaw and Verrall (1998). In the over-dispersed Poisson model the mean 
and variance are not the same. In our previous notation )Z(Em ijij = , with a variance 
function V ijij m)Z( φ=  and scale parameter 0>φ , combined with the log ‘link’ function  

ji)ijmlog( βαµ ++= . Over-dispersion is achieved through φ . This model reproduces 
the estimates of the classical chain-ladder method. 

Estimates of the parameters, , are obtained by using a ‘quasi-likelihood’ 
approach.  Renshaw and Verrall (1998) suggest the use of Pearson residuals in the GLM 
when there are negative values.  They point out that it “is not applicable to all sets of 
data, and can break down in the presence of a sufficient number of negative incremental 
claims.”  In addition, the Poisson assumption seems inadequate for continuous variables, 
like claims amounts. They discuss the relationship between this model and the chain-
ladder technique, and show that, under certain positivity constraints, the same reserve 
estimates are produced by each.   

ji βαµ ˆ,ˆ,ˆ

 
The negative binomial model is closely related to the previous one, Verrall (2000). The 
distribution in the GLM is now assumed to be a negative binomial with mean  

11 −− j,ij W)(λ  and variance 11 −− j,ijj W)(λφλ  , where W . The parameters  ∑=
=

j

k
ikij Z

1

}n,...,j:{ j 2=λ  are the typical chain-ladder development factors.   As before, φ  is an 
over-dispersion parameter. This  model yields essentially the same estimates as the (over-
dispersed) Poisson. With a sufficient number of negative incremental claims, it is 
possible that some of the λ’s (one would be enough) become less than one and so that 
clearly the variance would not exist. It is then necessary and possible to use a Normal 
approximation, and the chain-ladder results can still be reproduced. It is not 
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recommended to use the Normal approximation in all situations, mainly because real 
claims data are skewed, even though its application is likely to be less troublesome in 
practice. The normal approximation assumes the distribution is normal with the same 
mean as before and variance 1−j,ijWφ . The link function remains the same in all cases. 
This is seen to be equivalent to one proposed by Mack (1993). These models have the 
additional disadvantage that they incorporate n new parameters ( the jφ ) that must also 
be estimated, but this is the price one must pay to estimate the reserves in the presence of 
negative values.  

 =it
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In a recent paper Verrall (2004)  presents a Bayesian model for the Bornhuetter-Ferguson 
method. He indicates that  the Bayesian models derived in that paper may break down if 
there are negative incremental claims values, and is therefore probably only suitable for 
paid data. He further says that this is certain to happen if any column sum of incremental 
claims is negative and that the model can cope with some (few?) negative values.  
 
In this paper we follow the approach set out in de Alba (2002a) where use is made of the 
three parameter log-normal distribution to estimate outstanding claims reserves in the 
presence of negative incremental claims. Let the random variable  represent the value 
of incremental aggregate claims in the t-th development year of accident year  i, 
i,t=1,...,k. The  are known for i+t ≤ k+1  and we let  
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In de Alba (2002a) the threshold parameter is first estimated by Maximum Likelihood 
and then it is “plugged in” to  use  the ‘profile’ likelihood with δ  replaced by its ML 
estimator, say δ̂ , Crow and Shimizu (1988, page 123),  and define . 

This way, if some of the incremental claims are negative, the addition of  

)ˆlog( δ+= zitit

δ̂ will make 
the resulting value positive and the log-transformation can be used. Then the Bayesian 
analysis is carried out using results for a two parameter lognormal distribution, Zellner 
(1971b). The approach followed in that paper has the disadvantage that the variability due 
to estimating δ  is not taken into account. Furthermore, it is well known that the estimates 
of   δ   can be very unstable, see Cohen and Whitten (1980) and Johnson et al. (1994, 
chapter 14). Hill (1963) explains the cause of the instability and how it can be avoided by 
the use of  Bayesian methods. Here, we shall  use a full Bayesian structure for the model 
that solves these problems.  
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3. BAYESIAN MODELS 
 
We do not intend to give here an extensive review of Bayesian methods. Rather we will 
describe them very briefly and discuss their applications in actuarial science, specifically 
in loss reserving. Bayesian analysis of IBNR reserves has been considered before by 
Jewell (1989,1990), Verrall (1990) and Haastrup and Arjas (1996). For general 
discussion on Bayesian theory and methods see Berger (1985), Bernardo and Smith 
(1994) or Zellner (1971a). For a discussion of Bayesian methods in actuarial science see 
Klugman (1992), Makov (1996, 2001),  Scollnik (2001), Ntzoufras and Dellaportas 
(2002), de Alba (2002b) and Verrall (2004). Here, we refer only to those Bayesian 
models that can be applied to situations where 0<itZ  for some  i,t = 1,…,k. 

Verrall (1990) approaches the subject of predicting outstanding claims using hierarchical 
Bayesian linear models, considering the fact that the chain-ladder technique is based on a 
linear model: the two-way analysis of variance model (ANOVA). He essentially carries 
out a Bayesian analysis of the two-way ANOVA model to obtain Bayes and empirical 
Bayes estimates. The latter are given a credibility interpretation. Two alternative 
formulations are considered, one with no prior information and another where he uses a 
specific prior distribution for the parameters.  

More recently, Bayesian results are provided in England and Verrall (2002), notably for 
the Bornhuetter-Ferguson (B-F) technique. The Bornhuetter-Ferguson technique is useful 
when there is instability in the proportion of ultimate claims paid in the early 
development years, so that the chain-ladder technique yields unsatisfactory results. The 
idea in the B-Fmethod is to use external information to obtain an initial estimate of 
ultimate claims.  In the traditional B-F method use is made explicitly of perfect prior 
(expert) knowledge of ‘row’ parameters, ultimate claims. This is then used with the 
development factors of the chain-ladder technique to estimate outstanding claims. This is 
clearly well suited for the application of Bayesian methods when knowledge is not 
perfect. Verrall (2004) further explores this method in a Bayesian framework. In both 
references it is pointed out that they may break down in the presence of negative values, 
certainly if any column sum of incremental claims in the development triangle is 
negative. 

Ntzoufras and Dellaportas (2002) consider various competing models using Bayesian 
theory and Markov chain Monte Carlo methods to simulate. Claim counts are used in 
order to add a further hierarchical stage in the model with log-normally distributed claim 
amounts. In a recent paper, de Alba (2002a) presents a model for aggregate claims by 
separating number of claims and average claims, which are also assumed log-normally 
distributed. 

A standard measure of variability is prediction error, defined as the standard deviation of 
the distribution of possible reserves. In the Bayesian context the usual measure of  
variability is the standard deviation of the predictive distribution of  the reserves. This is a 
natural way of doing analysis in the Bayesian approach. In this paper our aim is to obtain 
not only this standard deviation, but also show the complete  predictive distribution. For 
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this purpose we will use Markov chain Monte Carlo simulation (MCMC) that will be 
implemented with the package WinBUGS 1.4 (Spiegelhalter et al., 2001).  

 

4. A BAYESIAN MODEL FOR AGGREGATE CLAIMS  
 
In this section we present a model for the unobserved aggregate claim amounts and hence 
the necessary reserves for outstanding claims. Let the random variable  represent the 
value of incremental aggregate claims in the t-th development year of accident year  i, 
i,t=1,...,k. The  are known for i+t ≤ k+1.  Let Y  be defined as in equation (1) and 
recall that if Y ∼ N(µ,σ

itZ

itZ

it

it
2) then  has a three parameter log-normal distribution and its 

density is as given in (2). 
itZ

The “threshold” parameter δ > 0 corrects the values so as to assure (  for 
i,t=1,...,k,  with i+t ≤ k+1.  We assume in addition that 
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i=1,...,k,   t=1,...,k  and i+t ≤ k+1 so that  follows a three parameter log-normal 
distribution,  denoted by  with 
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It is well known in ANOVA that certain restrictions must be imposed on the parameters 
in order to attain estimability in (3). We use the assumption that 011 =β=α . Also, we 
define  = (k+1)k/2 = number of cells with known claim information in the upper 
triangle; and T  = (k-1)k/2 = number of cells in the lower triangle, whose claims are 
unknown. 

UT

L

As mentioned in Section 2, one approach would be to use  the ‘profile’ likelihood with δ  
replaced by its ML estimator as given in  Crow and Shimizu (1988, page 123) or some 
other estimator,  say  δ̂ , define  and then carry out the rest of the 
analysis with this value replaced in (4). In this paper we will present a full Bayesian 
analysis and compare results.  

)ˆlog( δ+= zy itit
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where the product and the summations are over the known  values, 
. To carry out the Bayesian analysis we must specify prior 

distributions for the parameters 
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and the posterior distribution will be  
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We will use a hierarchical model in the following sections. In hierarchical models, at a 
first stage  the data is specified to come from a given distribution,  
in our case. At the second stage, the parameters are assumed to follow their own (prior) 
distributions, here ,  i,t = 2,…,k. Each one of these 
distributions may in turn depend on unknown ‘hyperparameters’ whose values or 
distribution will need to be specified. In the latter case it will be necessary to still add 
another stage, Klugman (1992, page 66). We will then use Markov chain Monte Carlo 
(MCMC) simulation to generate samples  from the posterior distributions of the 
parameters as well as the predictive distribution of the reserves. This can be implemented 
with the package WinBUGS 1.4 (Spiegelhalter et al., 2001). In the next section we 
describe the specification of the prior distributions. 

),,,,|( 2 δσβαµ tiitzf
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5.  PRIOR DISTRIBUTIONS 
 
Assuming are known, then a natural conditionally-conjugate prior for µ 

in the model (3) will be Analogously, the natural conjugate priors for 

δσβα and,, 2
ti

µ ).,(~ 2
00 σµN

ti βα and  are and , respectively. The values of the 
parameters in these distributions must be specified or else they must be assumed to 
follow a distribution. We will do the latter specifying a distribution that reflects little or 
no information, Zellner (1971a). This is easily done in WinBUGS, Scollnik (2001). 
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Now, given δβαµ and,, ti  the conjugate prior distribution for  will be an inverse 
gamma distribution,  

2σ
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Bernardo and Smith (1994), denoted by . Again, we will assume ),(~2 λνσ IG

),( λν follow distributions that reflect little knowledge about them.  
 
Finally we must specify the prior distribution for the threshold parameter δ, assuming the 
rest of the parameters, , are given. The only reference on this is Hill 
(1963). He specifies a prior distribution for δ  that reflects one’s subjective beliefs or 
knowledge about the parameters in order to limit the range of values they can take and 
thus avoid the strange results he describes. Alternative non-Bayesian methods for 
estimating δ, based on order statistics use the first order statistic of the sample 

2and,, σβαµ ti

}1,,...,1,;min{)1( +≤+ ktik== tizz it in their estimation process to estimate  δ, Cohen 
and Whitten (1980). Here we specify a Pareto distribution as a prior for δ 

 
                                      (7) ,00,)( )1( cacacf aa ≥>>= +− δδδ

 
where we shall use c  and a suitably specified distribution for a, so we use a 
further stage in the hierarchical model. We will use the notation 

)1(z−=
),(Par~ caδ . The 

reason for using this prior is that since we have negative values in the sample (at least 
one) we must make sure that )1(z>δ  and .( 0) >+ δitz  Also, this distribution does not 
assign zero probability to any intervals above c, so that the estimates that would result 
from alternative estimation methods are not excluded a-priori. Hence we can analyze 
alternative estimates of δ in relation to its posterior distribution under this model. 
 
6. ESTIMATING THE RESERVES 
 
We want to estimate (or obtain the distribution of) aggregate claims for accident year i 
given information on at least one year that has fully developed and perhaps on m previous 
completely known accident years. Let  for 1 ≤ t ≤ k. Hence, in the run-off 

triangle setup, we are really interested in estimating Z  i=2,...,k, given , and , 

i=1,...,k t=1,...,k, with i+t ≤ k+1. Now let , for i=2,...,k  with    a

ij
t
j

*
it ZZ 1=∑=

*
iki ZR −=

*
ik

*
iai

Z

*
kZ1 itZ

i=k-i+1, 

so that  is the accumulation of  up to the latest development period and R*
iai

Z itZ i = the 
total aggregate outstanding claims for the development years for which it is unknown, 
both corresponding to business year i, i.e. the required reserves corresponding to this 
business year. 

We assume the parameters are independent a-priori and specify  conjugate priors for θ 
and σ  and a Pareto prior for δ, as indicated in section 5. The joint posterior distribution is 
then seen to be  
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In the Bayesian approach, when interest centers on inference about the parameters it can 

be carried out using )|,,( 2 zf δσθ . When interest is on prediction, as in loss reserving, 

the past (known) data in the upper portion of the triangle, z , are used to predict the 

observations in the lower triangle  by means of the posterior predictive distribution itz

δσθδσθδσθ dddzfzfzzf itit
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Hence to compute the reserves for the outstanding aggregate claims we need to estimate 
the lower portion of the triangle. We can do this by obtaining the mean and variance of 
the predictive distribution. Hence for each cell we must obtain )|( zZE it . Then the Bayes 
estimate of outstanding claims for year of business i is ∑

+−> 1
)|(

ikt
it zZE . The Bayes 

‘estimator’ of the variance (the predictive variance) for that same year is too cumbersome 
to derive. One alternative would be to use direct simulation from the posterior 
distributions to generate a set of N randomly generated values for the parameters from (8) 
and then in turn use the resulting values of the parameters in ),,|( 2 δσθitzf . This yields 
random observations for aggregate  claims in each cell of the (unobserved) lower right 
triangle , ,  )( j

itz k,..,i 2= 1+−> ikt , for j=1,…,N, de Alba (2002b).  The resulting 
values will include both parameter variability and process variability.  Thus we can 
compute a random value of the total required reserves . The mean and 

variance can be computed as 
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The standard deviation  thus obtained is an ‘estimate’ for the prediction error of the 
number of claims to be paid. The simulation process has the added advantage that it is not 
necessary to obtain explicitly the covariances that may exist between parameters. They 
are dealt with implicitly. The direct simulation may be very cumbersome, if not 
impossible, to do if the posterior distribution is not of a known type. It is for this kind of 
situation where MCMC proves very useful. We turn to this in the next section. 

Rσ

 
 
7. IMPLEMENTING MCMC IN BUGS 
 
To implement the simulation by Markov chain Monte Carlo we use the package 
WinBUGS 1.4, Spiegelhalter et al. (2001). We need to specify each of the stages in the 
hierarchical model. According to the specification of the model in Section 5, in the first 
stage the likelihood function is: 

),(N~)Zlog(Y ititit
2σµδ+=  

jiit βαµµ ++=  
011 == βα  

111 +≤+== kjiy,k,...,j,k,...,i  
k = number of accident years = number of development years 
 

In the second stage the prior distribution is specified for the unknown parameters. In our 
model:  

 
  ),(N~ 20 µσµ

),0(~ 2
i

Ni ασα  

),0(~ 2
t

Nt βσβ  

),v(GI~ λσ 2  
),(Par~ caδ  

 
The prior distributions for  ti ,, βαµ and  have been chosen as to allow the simulation 
process to converge to any possible value, positive or negative. This will be further 
enhanced by the choice of their variances or the distribution of their variances. If these 
are allowed to be large the prior distributions will be of the non-informative kind. In the 
prior for  we choose each of the parameters (2σ ),v λ  to follow a distribution such that  
the prior reflects ignorance about the possible value of  , Hill (1963), Gelman (2004). 
This is done at the third stage. The prior distribution for 

2σ
δ  is specified, at a second stage, 

as indicated in Section 5, with c )(z 1−=  . A distribution is also specified for the 
parameter a in the Pareto distribution in a third stage.  
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In the third stage we specify the distributions for some of the (hyper) parameters used in 
specifying the distributions in stage two, Klugman (1992). These are usually given values 
that reflect lack of information,  Scollnik (2001) and Zellner (1971a). Thus 

 
),(~2 cbGIµσ  

),(~2 edGI
iασ  

),(~2 gfGI
tβσ  

)i,h(G~v  
)k,j(G~λ  

),(~ mlGa  
 

where b through m are given values, and  denotes a Gamma distribution with 
parameters j and k. As before, GI  denotes an inverse Gamma distribution with 
parameters b and c. 

),( kjG
),( cb

 
 

8. APPLICATION 
 
In this section we present a set of data that contains many negative values. Table 2 
presents the data which was provided by Prof. R. L. Brown and was kindly made 
available by an (anonymous) American insurance company. It includes a fairly large 
number of negative values. This set of data is interesting because there are actually four 
columns in the development triangle whose sum is negative and  this causes all the 
stochastic claims reserving methods to break down. Perhaps the only one that will 
produce results is the generalized linear model with over-dispersed Poisson distribution 
and using quasi-likelihood estimation, Renshaw and Verrall (1998). But this method 
implies the use of a Normal approximation, which may not be adequate with skewed 
distributions. Also, the standard (deterministic) chain ladder method does provide results, 
but it is not possible to obtain estimates of the variances. Tables 3 and 4 present the 
results of applying different methods.  
 
 
 
 Table 2

1 2 3 4 5 6 7 8
1 33250.717 2097.059 78.897 21.117 -18.654 -0.121 -5.072 -1.292 -0.775
2 36717.578 2583.632 -34.240 19.080 10.120 -3.699 -2.492 1.259
3 38155.786 2705.212 38.503 -0.247 6.442 -6.669 -9.525
4 36180.233 2601.743 21.501 -8.662 -6.250 12.865
5 35980.821 2892.427 52.478 10.982 -3.496
6 37518.185 2901.650 -23.612 -39.496
7 40213.152 3006.438 -14.591
8 39105.807 3080.126
9 41184.755

9 
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We compare the results of applying the chain-ladder method, the over-dispersed Poisson 
of Renshaw and Verrall (1998) with quasi-likelihood estimation, the Bayesian method 
using a ‘profile’ likelihood with δ replaced with its ML estimate, as in de Alba (2002a), 
and our fully Bayesian model presented above with MCMC simulation. The three stages 
of the hierarchical model were specified as follows: 
 
Stage 1: 

),(N~)Zlog(Y ititit
2σµδ+=  

jiit βαµµ ++=  
011 == βα  

111 +≤+== kjiy,k,...,j,k,...,i  
k = 9 
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Stage 3: 
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001000102
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).,.(GI~
j

001000102
βσ  

)001.0,5.2(~ Gν  
)1.0,2(~ Gλ  
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The parameters in the third stage were chosen to reflect lack of information. Those for 

are specified as in Spiegelhalter et al. (2003) and Verrall (2004). The 

priors for 

222 and,
ti βαµ σσσ

λν and  are specified so that the prior expected value of corresponds 
approximately to the value that results when applying OLS to the data after correcting by 
adding the MLE of 

2σ

δ , .Finally, the distribution for a was set so that  a-priori 2.300ˆ =δ
δ  has a large variance and so it allows the random values generated in the MCMC 
simulation to cover a broad range of values. Its prior expected value is between    and 

its MLE . In addition it is also one of the typical non-informative priors used with 
WinBUGS, Spiegelhalter et al. (2003). 

)1(z

δ̂
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We used an initial burn-in sample of 10000 iterations. Two parallel chains were 
generated, each one with a burn in sample of 5000. The results of these observations were 
discarded, to remove any effect from the initial conditions and allow the simulations to 
converge. We also examined the results using a number of different initial conditions to 
ensure that these had no effect on the results. We then ran a further 50000 simulations for 
each of the two chains to obtain the results shown below. Various checks were made of 
the convergence of the Markov chain, including a visual inspection of the sampled 
values. 
 
 
We obtain some characteristics of the posterior distribution of the parameters 

. They are shown in Table 3. The posterior mean of  δ is 182.0 while its 
MLE is . In this example the reserves in both Bayesian methods are not very 
close. They are given in Table 4.  The standard deviations from the full Bayesian model 
smaller. Again, the chain-ladder does not seem to be affected by the negative values. In 
this case the estimates of the reserves obtained with the fully Bayesian method presented 
here are lower than those of the non-Bayesian ones and than the others. Also, the 
variance of the MCMC estimates is smaller that those from the direct simulation. 

2and, σµδ
ˆ =δ 2.300

 
 
 

Table 3 
Percentiles Parameter Mean Std. Dev. 

2.50% Median 97.50% 
δ 182.0 50.0 102.5 176.6 302.3
µ 10.53 .0460 10.44 10.53 10.62
σ2 .0167 .0091 .0068 .0145 .0397

 
 
Figure 1 shows the predictive distribution for accident year 6 (top panel) and for the total 
(bottom panel). The latter has a long right tail. The distribution for reserves 
corresponding to accident year 6 shows a large probability of negative values and in fact 
the predictive mean close to zero. The results for accident years 2 and 4 (not shown) also 
yield medians very close to zero. This is not the case for total reserves. It appears that the 
use of MCMC, as opposed to plugging in the MLE of δ decreases the variance of the 
predictive distribution of the reserves. This probably has to do with some reduction in 
variance of the other parameters. The non-informative priors used in the third stage seems 
to allow a better fit to the data. For some accident years there may be a very high 
probability that claims result much larger that the reserves that may be set aside if the 
chain-ladder method is used, although the total reserves are fairly close.  

Reserves for Accident Year 6
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Figure 1 
 

 Table 4
Chain-
Ladder OD Poisson 

Reserves Reserves Reserves Std. Dev. Reserves Std. Dev.
2 -0.860 1.000 1.381 32.246 0.3587 32.22
3 -0.912 2.000 21.348 47.190 9.383 44.54
4 -6.601 3.000 5.810 57.877 1.187 52.91
5 -6.024 7.000 64.140 73.000 22.20 63.51
6 -8.715 -12.000 -54.890 81.640 -27.65 69.47
7 -8.817 22.000 77.690 107.550 7.945 79.73
8 9.513 48.000 244.080 148.150 49.17 94.72
9 3041.181 3085.000 3363.200 514.500 2835.0 468.8

TAL 766 000 3722.700 620.500 2897.0 545.3

Bayesian Bayesian MCMC
Year

NCLUD  REMAR
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The Bayesian method presented here constitutes an appealing alternative to claims 
reserving methods in the presence of negative values in incremental claims for some cells 
of the development triangle.  It yields good results. Furthermore, the model is based on 
fairly standard and widely used assumptions. However, the main advantage is that this 
method will not break down even in the presence of a considerable number of negative 
values.  
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