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0. What is this Paper about?

This paper:
I Proposes a one-step Likelihood Ratio unit root tests (LR) which

deals with dependence in a time series with an ARMA(1, 1)
model.

I Derives the asymptotic distribution of LR showing that:
I It is independent of the short-run parameters, and
I Has good size and power properties.

I Shows that the LR has higher power than the ADF∗ test for
several sample sizes and true values of the MA parameter
through Monte Carlo experiments.
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1. Motivation: Why do we test for Unit Roots

When we find a unit root we are facing a nonstationary process. This
changes the empirical and theoretical approach:

I We need special models to deal with it (e.g. Cointegrated VAR).

I Consequences for economics are important (e.g. Hall 1978
conclusion about the consumption obeying the PIH).

I Asymptotics are considerably different.
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1. Motivation: Available Unit Root Tests

How does unit root tests at hand deal with dependence?

I Long AR regression:
I ADF and all its variations.
I Elliott, Rothenberg and Stock tests: DF − GLS (a two-step unit

root test).
I A number of the M-Tests from Ng and Perron.

I Fourier Analysis (non-parametric estimation):
I Phillips and Perron.
I KPSS.

But, what is dependence exactly?
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1. Motivation: Building blocks of time series econometrics

The triple (Ω,F ,P) is a (complete) probability space, where Ω is the
event space, F is a σ − field and P is a probability measure.

Definition 1 (Stochastic Process)
A (discrete) Stochastic Process u(ω) is a sequence of (product)
measurable functions of the form u : Ω× Z −→ R with typical
element ut(ω) = ut.

Definition 2 (Economic Time Series)
An economic time series, {yt}n

t=0, is composed by n observations
each one generated by a rule -or Data Generating Process-M,
regarding the stochastic process u,

yt =M
(
{ul}t

l=−∞ , yj; θ
)
, j < t.
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1. Motivation: Dependence

Figure: Dependence illustration. Source: Davidson (1994) Chapter 13.
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1. Motivation: Modelling Dependence

Since we do not observeM, we need to approximate it, or model it
(i.e. we need to model dependence). Typical (linear) models:

I Long AR regression.
I ARMA.
I Fourier Analysis.
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1. Motivation: Pros and Cons of the Long AR

Pros:
I Easy to estimate with OLS.
I Easy to interpret.

Cons:
I Approximates dependence with “long” regressions.
I Low power for one-step estimation unit-root tests.

There are alternatives to model dependence!
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1. Motivation: Why ARMA?

Modelling dependence through an MA process has several
advantages, vis-á-vis long AR:

I Has a parsimonious representation.

I Dependence is not approximated, but modelled explicitly.

I MA is a mild form of Mixing, and buys more generality in
modelling asymptotics.
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1. Motivation: Why ARMA(1,1)?

To see why, we derive the “Exact Discrete Time” representation of a
continuous time DGP in the tradition of Bergstrom (1984 Handbook
of Econometrics).

I Many time series are observed in given points in time, these
series are generated, however, continuously in time (e.g. pricing
decisions in the stock market, exchange rates, consumption, etc.).

I These series are analized with econometric models for discrete
data. It is easy to argue that even though we observe a data point
once a day, say, its value contains some form of accumulative
information (from the continuous time DGP).
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1. Motivation: Why ARMA(1,1)?

I Let y(t) represent the value of such a time series at instant t, then
its observed value is given by:

yt =

∫ t

t−1
y(r)dr. (1)

I Bergstrom shows that we can model exactly yt dynamics as
follows. The continuous random scalar series y(t) satisfies:

dy(t) = [a + bt + Ay(t)]dt + ζ(dt), t > 0, (2)

where a, b and A are non-random scalars and ζ(dt) is a random
measure with zero mean and zero covariances among two
disjoint time intervals.
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1. Motivation: Why ARMA(1,1)?
I Since we are interested in the level of y(t), we need to solve the

SDE in (2). Given y(0), the solution is

y(t) = eAty(0) +

∫ t

0
eA(t−s)[a + bs]ds +

∫ t

0
eA(t−s)ζ(ds), t > 0. (3)

I From this expression we can obtain the “exact discrete time
representation”

∆y(t) = (eA − 1)y(t − 1) +

∫ t

t−1
eA(t−s)[a + bs]ds +

∫ t

t−1
eA(t−s)ζ(ds) (4)

and after integrating both sides, the ARMA(1, 1)

∆yt = (eA − 1)yt−1 + ψt + ut, t = 1, 2, . . . n. (5)

since

ut =

∫ t

t−1

∫ r

r−1
eA(r−s)ζ(ds)dr. (6)
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2. DGP and Models

Assumption 3 (Data Generating Process)
The observed time series, {yt}n

t=0, is generated by:

∆yt = (ρ0 − 1)yt−1 + u0,t,

ρ0 − 1 =
c
n
, c < 0.

Assumption 4 (Error Process)
The error process {u0,t}n

t=0, depends on a parameter vector
θ20 = (α0, σ

2
0)′ and satisfies

εt ∼ iid(0, σ2
0),

εs = 0 for s ≤ 0,
u0,t = εt + α0εt−1,

sup
t

E|u0,t|δ < ∞ for δ > 2.

Moreover, the covariance structure is summarised by matrix Γ0.
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2. DGP and Models

I The set of models we estimate is given by:

∆yt = (ρn − 1)yt−1 + ut, or (A)

∆yt = µn + (ρn − 1)yt−1 + ut, or (B)

∆yt = µn + τntn + (ρn − 1)yt−1 + ut, (C)

where in is a vector of 1’s of dimensions (n× 1) and tn is a
(n× 1) vector containing tj = j in its j− th element.

I We collect the long-run parameters to be estimated in the vector
θ1n = (ρn, µn, τn)′.
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3. ML Estimation: Assumptions

Assumption 5 (Parameter Space)

(i) The parameter space Θ is convex and compact.

(ii) Θ = Θ1 ×Θ2. Θ1 contains the long run parameters (i.e. θ1n)
and Θ2 contains only short-run parameters (i.e. θ2n = (αn, σ

2
n)′).

(iii) Θ2 contains only elements that ensure Γ−1
n exists.

Remark 6
Letting γ(j) = Cov(u0,t, u0,t−j), Assumption 4 implies a finite
long-run variance: σ2

u =
∑∞

k=−∞ γk <∞.

Remark 7 (Gaussianity)
Assumption on the error process {u0,t}n

t=0 allows us to use the
Gaussian likelihood for estimation.

16 / 37



3. ML Estimation: Usual set-up
The vector of estimates θ̂n can be obtained from maximizing the
log-likelihood for {u0,t}n

t=0:

ln(θn) = −n
2

ln |2π| − 1
2

ln det |Γn| −
1
2

u′nΓ−1
n un. (8)

Define a new loss function Qn(θn) = −2ln(θn)− n ln |2π| so that the
objective is now to find the minimizer in

Qn(θn) = ln det |Γn|+ u′nΓ−1
n un,

where, in vector notation, and conditional on the estimated model we
have

un = ∆y− (ρn − 1)y−1, or

un = ∆y− (ρn − 1)y−1 − µnin, or

un = ∆y− (ρn − 1)y−1 − µnin − τntn.
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3. ML Estimation: A problem

As explained by Saikkonen (2005 Econometric Theory), it is not
possible to obtain consistency of θ̂1n with the usual steps. Why?

I Consistency proofs in the “textbook way” assume all estimates
converge at the same rate.

I This is not the case here: Long-run estimate θ̂1n typically
converges faster (superconsistency).

I Short-run estimates converge at rate n1/2 (Hannan (1973 J. of
Applied Probability)).

Solution proposed by Saikkonen: obtain consistency by splitting the
ML estimation in two, a short-run and a long-run problem.
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3. ML Estimation: Decompose the optimization in a
long/short-run problem

Decomposing the ML problem in a short-run part and a long-run part
also allows us to:
I Use existent results to deal with the short-run dynamics causing

the dependence.
I Obtain tractable closed forms out of the first order conditions.

Following Saikkonen, add and subtract the elements of θ10 from un to
get:

un = u0 − (ρn − ρ0)y−1, or

un = u0 − (ρn − ρ0)y−1 − (µn − µ0)in, or

un = u0 − (ρn − ρ0)y−1 − (µn − µ0)in − (τn − τ0)tn.

How does the new optimization problem looks?
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3. ML Estimation: Decompose the optimization in a
long/short-run problem

The new optimization problem, conditionally on the estimated model,
is for example:

Qn(θn) = (ρn − ρ0)2y′−1Γ−1
n y−1 − 2(ρn − ρ0)y′−1Γ−1

n u0

+ ln det |Γn|+ u′0Γ−1
n u0,

= Q1n(θn) + Q2n(θ2n). (9)

Remark 8
The optimization problems for models (B) and (C) can be split in the
same fashion, isolating Q2n(θ2n).

Remark 9
(a) Q2n(θ2n) is the ML problem of a MA(1) process. It is thus
stationary and we know its asymptotic properties. (b) Q1n(θ0) = 0.
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3.1 ML Estimation: Consistency

Theorem 10 (Consistency of θ̂n)
Let ν = diag(nν1 , nν2 , nν3). If {yt}n

t=0, {u0,t}n
t=0 and Θ are given by

assumptions 3, 4 and 5, respectively, then the ML estimate θ̂n is
consistent. In particular ν(θ̂1n − θ10) −→p 0 and θ̂2n − θ20 −→p 0.

Proof (Intuition).
For any θn write

Qn(θn)− Qn(θ0) = Q1n(θn) + Q2n(θ2n)− Q2n(θ20).

We want to prove the following: If d(θn, θ0) > 0 (i.e are not close)
then infθn:d(θn,θ0)>0 Qn(θn)− Qn(θ0) > 0. We do this for Q1n and
Q2n. �
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3.2 ML Estimation: Asymptotic Distribution (Preliminaries)
The normalised Score vector sn(θn), corresponding to the optimization
problem (9) is as follows. For every estimated model we will have:

s2n,j(θn) = n−1/2 ∂Q1n(θn)

∂θ2n,j
+ n−1/2 ∂Q2n(θn)

∂θ2n,j
, j = 1, 2. (10)

I If the estimated model is (A):

s1n(θn) = 2n−1 [(ρn − ρ0)y′−1Γ−1
n y−1 − y′−1Γ−1

n u0
]
. (11)

I If the estimated model is (B):

s1n,ρ(θn) = 2n−1 [(ρn − ρ0)y′−1Γ−1
n y−1 + (µn − µ0)i′nΓ−1

n y−1

− u′0Γ−1
n y−1

]
.

(12)

I If the estimated model is (C):

s1n,ρ(θn) = 2n−1 [(ρn − ρ0)y′−1Γ−1
n y−1 + (µn − µ0)i′nΓ−1

n y−1

+ (τn − τ0)t′nΓ−1
n y−1 − u′0Γ−1

n y−1
]
.

(13)
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3.2 ML Estimation: Asymptotic Distribution (Preliminaries)

Lemma 11
If Qn(θn) is given by expression (9), then for each estimated model Q1n(θn) is not
relevant to derive the asymptotic distribution of θ̂2n. Equivalently, if Q1n(θn) is given
as in (9), then

n−1/2Q1n(θn) −→p 0.

Definition 12 (Ornstein-Uhlenbeck Process)
For r and s real numbers, the functional Jc(r) of the form

Jc(r) =

∫ r

0
exp[(r − s)c]dW(s)

= W(r) + c
∫ r

0
exp[(r − s)c]W(s)ds

is the Ornstein-Uhlenbeck Process, associated with c andW(·) is a standard
Brownian Motion, satisfying the SDE dJc(r) = cJc(r)dr + dW(r). To ease notation
write Jc = Jc(r),

∫ 1
0 Jc =

∫ 1
0 Jc(r)dr,W =W(r) and

∫ 1
0 W =

∫ 1
0 W(r)dr.
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3.2 ML Estimation: Asymptotic Distribution

Theorem 13 (Asymptotic Distribution of θ̂1n)
Let {yt}n

t=0, {u0,t}n
t=0 and Θ be given by assumptions 3, 4 and 5, respectively,

(i) If the estimated model is (A), and s1n(θn) is given by (11), then

n(ρ̂n − ρ0)⇒
∫ 1

0 JcdW∫ 1
0 J 2

c

.

(ii) If the estimated model is (B), and s1n(θn) is given by (12), then

n(ρ̂n − ρ0) ⇒ ∆
−1
µ

[∫ 1

0
JcdW −W(1)

∫ 1

0
Jc

]
.

(iii) If the estimated model is (C), and s1n(θn) is given by (13), then

n(ρ̂n − ρ0)⇒ ∆
−1
µτ

[∫ 1

0
JcdW +W(1)

(
6
∫ 1

0
rJc − 4

∫ 1

0
Jc

)
+

∫ 1

0
rdW

(
6
∫ 1

0
Jc − 12

∫ 1

0
rJc

)]
,

where
∆µ =

∫ 1
0 J

2
c −

(∫ 1
0 Jc

)2
and ∆µτ =

∫ 1
0 J

2
c − 12

(∫ 1
0 rJc

)2
− 4

(∫ 1
0 Jc

)2
+ 12

∫ 1
0 rJc

∫ 1
0 Jc.
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3.2 ML Estimation: Asymptotic Distribution

Theorem 14 (Asymptotic Distribution of θ̂2n (Hannan 1973))
Let {yt}n

t=0, {u0,t}n
t=0 and Θ be given by assumptions 3, 4 and 5,

respectively. Given Lemma 11, and first order condition (10), the
asymptotic distribution of θ̂2n is that of a ML estimate for a stationary
MA(1) process. This is,

n1/2
(
θ̂2n − θ20

)
−→d N

(
0,V−1(θ20)

)
,

where the kl element of V(θ20) is given by

Vkl(θ20) =
1

2π

∫ π

−π
f−1(ω; θ20)

∂f (ω; θ20)

∂θ20,k
f−1(ω; θ20)

∂f (ω; θ20)

∂θ20,l
,

and f (ω; θ20) is the spectral density of {u0,t}n
t=0.
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4. LR Class of Unit Root Tests

Definition 15 (LR Test Statistic)
Let θ̂n and θ̃n be the unrestricted and restricted ML estimates,
respectively. For a given sample size, n, and the log-likelihood
function defined by (8), the Likelihood Ratio Statistic for testing the
Null Hypothesis ρ0 = 1, against the Alternative Hypothesis ρ0 < 1, is
given by

LR = 2
[
ln(θ̂n)− ln(θ̃n)

]
.

In particular:

(i) If the estimated model is (A), θ̃1n = 1 and LRc = LR.

(ii) If the estimated model is (B), θ̃1n = (1, 0)′ and LRµc = LR.

(iii) If the estimated model is (C), θ̃1n = (1, 0, 0)′ and LRµτc = LR.
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4.1 LR Class of Unit Root Tests: Asymptotic Distribution
Theorem 16 (Asymptotic Distribution of LR)
For the test given in Definition 15, let ν(θ̂1n − θ10) −→p 0 and θ̂2n − θ20 −→p 0:

(i) If the estimated model is (A), then

LRc ⇒
[∫ 1

0
J 2

c

]−1 [∫ 1

0
JcdJc

]2

.

(ii) If the estimated model is (B), then

LRµc ⇒ ∆
−1
µ

[∫ 1

0
JcdJc

(∫ 1

0
JcdJc − 2W(1)

∫ 1

0
Jc

)
+W2

(1)

∫ 1

0
J 2

c

]
.

(iii) If the estimated model is (C), then

LRµτc ⇒ ∆
−1
µτ

{(∫ 1

0
JcdJc

)2

+W2
(1)

(
4
∫ 1

0
J 2

c − 12
(∫ 1

0
rJc

)2
)

+ 12
(∫ 1

0
rdW

)2
(∫ 1

0
J 2

c −
(∫ 1

0
Jc

)2
)

+ 12
∫ 1

0
JcdJc

[
W(1)

(∫ 1

0
rJc −

2
3

∫ 1

0
Jc

)
+

∫ 1

0
rdW

(∫ 1

0
Jc − 2

∫ 1

0
rJc

)]
+ W(1)

∫ 1

0
rdW

(
24
∫ 1

0
Jc

∫ 1

0
rJc − 12

∫ 1

0
J 2

c

)}
.
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4. LR Class of Unit Root Tests: Asymptotic Distribution

Remark 17
The asymptotic distribution of LRc shown in Theorem 16 coincides
with that found in:
I Johansen (1988 J. of Econ. Dynamics and Control)
I Rothenberg and Stock (1997 J. of Econometrics)

Remark 18
Stock (1994 Handbook of Econometrics) lists the characteristics that
good unit root tests have:

(i) Free from parameters for the constant, the trend or serial
correlation;

(ii) Good power in large samples; and

(iii) Both good power and small size distortions when computed over
different models and samples.
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5. Empirical Properties: Asymptotic Size

Test/(1− ᾱ) Sample n 85% 90% 95% 97.5% 99%
LR0 104 2.31 2.98 4.11 5.43 7.17
LRµ0 104 6.61 7.54 9.22 10.73 12.93
LRµτ0 104 10.82 11.97 13.94 15.96 18.46

Table: Critical Values from Simulations of LR.

Test/(1− ᾱ) Sample n 85% 90% 95% 97.5% 99%
No mean 400 2.32 2.98 4.14 5.30 7.02

Mean 400 6.54 7.50 9.13 10.73 12.73
Trend 400 9.43 10.56 12.39 14.13 16.39

Table: Critical Values for Johansen’s Test out of 5,000 Monte Carlo
replications.
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5. Empirical Properties: Asymptotic Power Envelope
With these critical values, we simulate the Asymptotic expressions
derived above for LR. We run 104 repetitions and get the rate of
rejection for values of c ∈ {0, 2, ...30}. This yields the Asymptotic
Power Envelope (APE):

Figure: Asymptotic Power Envelope.
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5.1 Empirical Properties: Cancelling Roots

Recall the ARMA(1, 1) DGP we are using here,

yt = ρ0yt−1 + u0,t

u0,t = εt + α0εt.

When we write the problem in polynomial-lag form, we get

(1− ρ0L)yt = (1 + α0L)εt.

But note that if −ρ0 = α0, yt = εt (i.e. yt is white noise).

Testing for a unit root in this case becomes more cumbersome. So we
need to be careful!
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5.1 Empirical Properties: Power Comparison LR
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5.2 Empirical Properties: Comparing LR with ADF∗

I Having established the empirical properties of the power of the LR test,
we compare its performance with the Augmented Dickey Fuller test,
ADF∗.

I This test is a good benchmark since it is still popular among
practitioners.

I The DF − GLS and the point optimal tests from ERS are not good
benchmarks as they deal with the deterministic parameters before
carrying out the unit root testing (i.e. the tests are computed in two
steps whereas the test proposed in this paper is computed in one-step).

I ADF∗ is a t-ratio test on the whether (ρ̂∗n − 1) = 0 in the following
model

∆yt = (ρ̂∗n − 1)yt−1 +

k∑
j=1

ζ̂j∆yt−j + v̂t,

where the lag-length, k > 0, is chosen using the Modified Akaike
Information Criteria proposed by Ng and Perron (2001 Econometrica).
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5.2 Empirical Properties: Comparing LRc with ADF∗
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5.2 Empirical Properties: Comparing LRµc with ADF∗
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5.2 Empirical Properties: Comparing LRµτc with ADF∗
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6. Concluding Remarks

I This paper contributes to the unit root testing literature with a
fully parametric unit root test within the LR class of tests
modelling dependence explicitly with a MA(1) process.

I It also introduces a number of limiting results that involve
modelling dependence explicitly. Results lay down the path for
future work within the LR class of tests with more general
ARMA(p, q) models.

I In Chambers and Hernandez (2015) we propose to estimate the
parameters in two steps á la ERS in an ARMA(p, q) model.

I Empirical analysis showed good power properties when
compared to the Asymptotic Power Envelope, particularly for
large enough samples.

I Compared with the ADF∗, the LR test displayed higher power
consistently, as long as there is no root-cancelling and the MA
parameter is larger than −0.5.
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