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Introduction, Bayesian Analysis of Inverse Problems

Problem 1: Model the growth of bacteria in a closed laboratory
environment with limited resources. Bacteria will increase exponentially ...
If X is the number of Bacteria then

dX

dt
= λX (t),

exponential growth, Malthus model. until an essential nutrient is
exhausted, reaching a maximum K . Perhaps then:

dX

dt
= λX (t)(K − X (t)), X (0) = X0 (1)

with r = λK being the growth rate and K the carrying capacity e.g.
limt→∞ X (t) = K . Malthus-Verhulst growth model.

For θ = (λ,K ), finding Xθ(t) is the Direct Problem.
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Introduction, Bayesian Analysis of Inverse Problems

Problem 2: Now suppose you have observations yi on the number of
bacteria a times t1, . . . , tn ∈ [0,T ]n, and assuming a model for bacteria
growth Xθ(t), what can be said about the unknown parameters θ?

Since now we observe (somehow) Xθ(t) and we want to know abot θ, this
is the Inverse Problem.
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Introduction, Bayesian Analysis of Inverse Problems

In General:
Assume that we observe a process y = (y1, . . . , yn) at the discrete times
t1, . . . , tn ∈ [0,T ]n such that

yi = f (Xθ(ti )) + εi , εi ∼i .i .d. N (0, σ2) (M). (2)

where Xθ is the solution of the following system of ordinary differential
equations, namely the the regressor or the Forward Model,

dXθ

dt
= F (Xθ, t, θ); Xθ(t0) = X0. (3)

θ ∈ Θ ⊂ R
d is a vector of unknown parameters.

F : R
p × [0,T ] × Θ 7→ R

p is a known function1.

From the data y, now we want to know about the parameters θ. This is
the Inverse Problem.
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Introduction, Bayesian Analysis of Inverse Problems

We may regard this problem as a mapping

Ft(θ) = (f (Xθ(t1)), . . . , f (Xθ(tn))),

this is the forward map. The inverse mapping is in general ill posed, and
does not make much sense:

“F−1
t (y1, . . . , yn) = θ′′.

Something else needs to be done/assumed, like a “regularization” strategy,
a noise model etc. or

Uncertainty Quantification (UQ) using bayesian inference.
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Introduction, Bayesian Analysis of Inverse Problems

We have then

yi = f (Xθ(ti )) + εi , εi ∼i .i .d. N (0, σ2). (4)

Let, for a second that Xθ(t) = θ0 + θ1t + θ2t
2 and f (x) = x , a linear

model, or f (x) = ex , a Generalized Linear Model, etc. This is a usual
statistical problem. This is done everyday in statistics!

Xθ(ti) is some regressor with parameters θ, f (x) is a link function, yi is
data and the model is additive Gaussian independent noise.
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Introduction, Bayesian Analysis of Inverse Problems

In general the joint distribution for data is

f (y|θ, σ)

where E (yi |θ, σ) = f (Xθ(ti )), and by observing the data y we want to
infer θ ...

The Inverse Problem is an inference problem.
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The Bayesian approach for inference

Uncertainty (formally defined) is Quantified (UQ) with a probability
measure. The agent interested in knowing about θ, establishes a random
variable Θ with its probability density

PΘ(·).

The values Θ takes are the possible values for the parameters.

This probability measure quantifies the uncertainty the agent has regarding
the possible values for the parameters in the model.

PΘ(θ) is called the a priori distribution.
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The Bayesian approach for inference

In the presence of data Y = y, and assuming a model for Y PY|Θ(y|θ), the
Bayesian theory prescribes to

calculate the conditional distribution of the unknowns given the
data. That is

PΘ|Y(θ|y) =
PY|Θ(y|θ)PΘ(θ)

PY(y)
,

which is conveniently calculated using Bayes’ theorem (and thus its
name!).

PΘ|Y(θ|y) is called the a posteriori distribution.
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Bayesian Inference for Inverse Problems

In the above context, we include the observational noise as an unknown,
therefore the thoeretical posterior distribution is

PΦ|Y(θ, σ|y) =
PY|Φ(y|θ, σ)PΦ(θ, σ)

PY(y)
. (5)

where PΦ(θ, σ) is the prior distribution on Φ = (θ, σ) and

PY(y) =

∫

PY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ

is the normalization constant, also called the marginal likelihood of data
y.
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Bayesian Inference for Inverse Problems

Therefore, the likelihood function

PY|Φ(y|θ, σ) = σ−n(2π)−n/2 exp

{

−
1

2σ2

n
∑

i=1

(yi − f (Xθ(ti )))
2

}

(6)

where Φ = (Θ,Σ) is a random variable with particular realizations
φ = (θ, σ).

This expression involves the computation of Xθ, a solution of the ODE!.
However, except in very simple cases, an explicit expression of the solution
is in general not available (although its existence is ensured by the
regularity conditions on F ; the lhs of the ODE system dX

dt
= F (X , θ).)
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Bayesian Inference for Inverse Problems

As a consequence, in practice, the ODE system is solved using a numerical
solver and inference is performed, not on the previous “exact” model but
on an approximate model, namely

yi = f (X h
θ (ti)) + εi , εi ∼i .i .d. N (0, σ2) (Mh) (7)

where X h
θ denotes the approximate solution of (3) supplied by the

numerical solver (h being a precision parameter of the solver, typically its
step size). The new likelihood derived from model Mh is thus

Ph
Y|Φ(y|θ, σ) = σ−n(2π)−n/2 exp

{

−
1

2σ2

n
∑

i=1

(yi − f (X h
θ (ti )))

2

}

.
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ODE solvers and Bayes

Therefore, in general, we need to use a numerical method to approximate
Xθ(t) with X h

θ (t) for some precision h.

Linear Multistep Methods, like the Adams–Bashforth or Adams–Moulton
methods for non-stiff ODE’s are preferred in the literature (or the
backward differentiation formulae (BDF) for stiff systems are favored in
the literature).

In our experience we have worked with the LSODE FORTRAN package,
which is now available in a series of platforms including Python-SciPy and
R, that dynamically choose between precisely the former mentioned solvers.
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ODE solvers and Bayes: Global error control

As a fact, for any explicit one-step method of order p such as Euler
(p = 1) and Runge-Kutta (p = 2 or p = 4) schemes, the global error is of
order O(hp) for h small enough. That is

max
t∈{t1,t2,...,tn}

||Xθ(t) − X h
θ (t)|| ≤ Cθh

p.

The Adams–Bashforth or Adams–Moulton methods have global error order
of p ≥ 4.

This global error order control is the only assumption needed to prove our
main result.
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Bayesian Inference for Inverse Problems

The numerical posterior distribution is

Ph
Φ|Y(θ, σ|y) =

Ph
Y|Φ(y|θ, σ)PΦ(θ, σ)

Ph
Y(y)

(8)

where PΦ(θ, σ) is the prior distribution on (θ, σ) and

Ph
Y(y) =

∫

Ph
Y|Φ(y|θ, σ)PΦ(θ, σ)dθdσ

is the normalization constant, also called the marginal likelihood of data
y.
Since there is no alternative but to use the numerical posterior, there
exists a real need in understanding and controlling the error made in
working with Ph

Y|Φ(y|θ, σ) instead of PY|Φ(y|θ, σ).

We further elaborate on this problem and present some recent work by the
authors.
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Bayes Factors

Main idea: Use the Bayesian ‘model’ comparison methodology (ie.
Bayes Factors) when analyzing the numerical vs. the theoretical
versions of the resulting posterior distribution.

The Bayesian model comparison and model averaging tools, in particular
pairwise model comparison using Bayes Factors, is in such case the main
tool to be used in this context, as far as predictive power is concerned
Hoeting et al. (1999).

That is, compare PΘ|Y (θ|y) vs Ph
Θ|Y (θ|y) as statistical models. That is,

model M vs. Mh.
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Approximations

Recently a series of papers, for example Schwab and Stuart (2012), discuss
regularity conditions under which Ph

Θ|Y (θ|y) tends to the PΘ|Y (θ|y) as the

approximation error (h) tends to zero, using a suitable metric.

A metric comparison (ie. ||PΘ|Y (·|y) − Ph
Θ|Y (·|y)||) is useful to proving

the required convergence theorems, but more practical considerations
will be needed when evaluating the relative benefits of a numerical
approach with a particular solver step size h > 0 (for data y).
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Approximations

Note that both PΘ|Y (·|y) and Ph
Θ|Y (·|y) may be compared as models,

being PΘ|Y (·|y) the reference and only theoretically available posterior

and the approximate Phi

Θ|Y (·|y), for various solver precisions
h1 < h2 < · · · , as alternative and decreasingly less computationally
demanding competing models.

Bayes factors may then be used to establish a sound comparison, to
balance predictive power on the one hand vs. solver CPU time on the
other, to establish a useful solver precision.
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Bayes Factors and Bayesian model selection

In Bayesian inference, model selection is performed using the Bayes factors
whose principle is recalled here in a general context. Let y be the
observations and let M and Mh the exact theoretical and the
approximate numerical statistical models, arising from:

M =

{

y ∼ PY|Φ(y|φ)

φ ∼ PΦ(φ)
Mh =

{

y ∼ Ph
Y|Φ(y|φ)

φ ∼ PΦ(φ).

where φ = (θ, σ).
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Bayesian model selection

Consider a prior distribution on the set of the models {M,Mh}, the
decision between the competing models M and Mh is based on the ratio
of their respective posterior probabilities

P(M|y)

P(Mh|y)
=

PY(y)

Ph
Y(y)

P(M)

P(Mh)

where P i
Y(y) is the ‘integrated likelihood’ or the marginal distribution of Y

of model Mi , namely

Ph
Y(y) =

∫

Ph
Y|Φ(y|θ, σ)PΦ(θ, σ)dθdσ

where M0 = M. In fact, this is the normalization constant for Mh.
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MCMC

Simulation from the posterior distribution is not a direct task and Markov
Chain Monte Carlo (MCMC) algorithms are standard tools to sample from
the posterior distribution Ph

Φ|Y(θ, σ|y).

For nonlinear forward maps multimodality is very common.

In our examples we use the t-walk Christen and Fox (2010), a self
adjusted, generic MCMC for continuos distributions
http://www.cimat.mx/~jac/twalk/. This is an affine invariant MCMC.
Also, inspired by the t-walk, there is the emcee (the MCMC hammer)
http://dan.iel.fm/emcee/current/.

Has no tuning parameters, and is suitable for mutimodal posteriors ... and
is implemented in R, Python, C++, C and Matlab.
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t-walk

Inclusive le hicieron su camiseta:
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Bayesian model selection

Therefore, the comparison of models relies on the computation of the
marginal likelihoods Ph

Y(y) which has been the object of a rich literature.

We use the Gelfand and Dey’s estimator that recycles the evaluations of
the MCMC, with basically no additional computational burden.
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Main Result

We establish how to approximate the Bayes factors, without having
the theoretical reference model, using solely the numerical solver
approximation rates.
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Main Result

Theorem

Assume that the numerical solver is such that the global error may be
written as

Eh(t, θ) = X h
θ (t) − Xθ(t) = O(hp),

where h is the stepsize of the method (ie. the solver is of order p). In
addition, assume that the observation function f is differentiable on
{Xθ(t), θ ∈ Θ, t ∈ [0,T ]}.

Then, there exists a constant B(y) ∈ R (which does not depend on h)
such that

PY(y)

Ph
Y(y)

≃ 1 + B(y)hp.
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Main Result

Corollary

Moreover If ĝ =
∫

g(φ)PΦ|Y(φ|y)dφ and

ĝh =
∫

g(φ)Ph
Φ|Y(φ|y)dφ exists, then

|ĝh − ĝ | =
PY(y)

Ph
Y(y)

Bg (y)hp = O(hp),

for some constant Bg (y) (which does not depend on h).

Capistrán/Christen/Donnet (CIMAT/AgroParisTech) ODE and Bayes ITAM, 19FEB2016 26 / 44



Numerical example: Logistic Growth

The dynamics are governed by the following differential equation

dX

dt
= λX (t)(K − X (t)), X (0) = X0 (9)

with r = λK being the growth rate and K the carrying capacity e.g.
limt→∞ X (t) = K .
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Numerical example: Logistic Growth

Equation (9) has an explicit solution equal to

X (t) =
KX0e

λKt

K + X0(eλKt − 1)
.

We simulate two synthetic data sets with the error model yi = X (ti) + εi ,
where εi ∼ N (0, σ2), and the following parameters
X (0) = 100, λ = 1, K = 1000, σ = 1 or 30.

The datasets are plotted on Figure 1 for the two chosen values of σ. We
consider 26 observations at times ti regularly spaced between 0 and 10.
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Numerical example: Logistic Growth
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Figure: Synthetic data for the Logistic growth with λ = 1, K = 1000 and σ = 1
(left) or σ = 30 (right).
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Numerical example: Logistic Growth

For this first toy example, K is taken as known and inference is
concentrated on the single parameter λ; we consider a Gamma distribution
for the prior on λ.
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Numerical example: Logistic Growth, σ = 1
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Figure: Ph
Y(y) for various step sizes, computed by numerical integration (solid

thin lines) or estimated using the MCMC sample (triangles). In black,
Runge-Kutta solver (RK) of order 1 (Euler), in green RK of order p = 2, in blue
RK of order p = 4. Red line: true marginal PY(y) calculated using numerical
integration on the analytic solution. Thick lines indicate the regression for
estimated values for P̂h

Y(y) = a + bhp for the orders p = 1, 2, 4.
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Numerical example: Logistic Growth, σ = 1

σ PY(y) P̂Y(y)

1 1.854 10−18 1.862 10−18

30 1.638 10−60 1.699 10−60

Table: Comparison of exact an estimated marginals for the Ringue-Kutta method
of order 4.
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Numerical example: Logistic Growth, σ = 1
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Figure: (a) CPU time for various step values hk and p = 1, 2, 4, relative to 10,000
iterations of the MCMC. (b) Posterior distribution of λ the for RK4 solver, p = 4,
for step sizes h = 0.01 and h = 0.05 (histograms) and exact posterior (black
density). 10,000 iterations of the MCMC took 17 min for h = 0.01 and 2 min for
h = 0.05; a 90% reduction in CPU time with no noticeable difference in the
resulting posterior distribution.
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Numerical example, σ = 30
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Figure: Ph
Y(y) for various step sizes, both exact (solid thin lines, using numerical

integration) and estimated using the MCMC sample (triangles). We use a
Rungue-Kutta solver of order 4 (classical RK4, blue), only. Red line: true
marginal PY(y) calculated using numerical integration on the analytic solution.
Thick lines indicate the regression for estimated values for P̂h

Y(y) = a + bhp for
the order p = 4.
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Numerical example, σ = 30
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Figure: (a) Corresponding CPU time, relative to 10,000 iterations of the MCMC.
(b) Posterior distribution of λ the for RK4 solver, p = 4, for step sizes
h = 0.00625 and h = 0.1 (histograms; and exact posterior, black density). The
former takes 36 min and the latter 2.5 min.
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Numerical examples: A Diabetes minimal model

dG

dt
= (L − I ) G +

D

θ2
, (10)

dI

dt
= θ0

(

G

Gb

− 1

)+

−
I

a
, (11)

dL

dt
= θ1

(

1 −
G

Gb

)+

−
L

b
, (12)

dD

dt
= −

D

θ2
. (13)
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Numerical examples: A Diabetes minimal model

Figure: OGTT test performed in an obese male adult, with glucose measurents taken every 30 min up to 2 hr. Note the
oscilating nature of the data, typically of a not well control Insulin-Glucose system. Both θ0 and θ1 have large values in
comparison to normal subjects. The MAP model is shown in red, along with draws from the posterior predictive distribution
shown in the shaded areas.
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Numerical examples: A Diabetes minimal model

Figure: Bayes Factors study for the Diabetes minimal model. An order 4 Runge-Kutta solver was used to produce marginal

values Ph
Y(Y) for step sizes as show. The red line in (a) is the numerical integration approximation of Ph

Y(Y) using step size

0.25 · 2−7 (smallest step size used) while the triangles are Monte Carlo estimates; these seem to slightly underestimate the

former. The solid blue line is a regression model a + bh4 estimate using step sizes marginal estimates from 0.25 · 2−1 to

0.25 · 2−4 only.
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Numerical examples: A Diabetes minimal model

(a) (b)

Figure: (a) Corresponding CPU times for various step sizes. In (b) we compare
the resulting posterior with step size 0.25 · 2−3 and 0.25 · 2−7 showing basically no
difference and resulting in a near 90% reduction in CPU evaluation time.
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Discussion

We advance on some theoretical aspects of the Bayesian analysis of
ODE systems.

Basing our comparison on theoretical vs approximate posterior on the
use of Bayes Factors, which is the natural tool to comparing models
in a Bayesian context.

We contribute to the intuitive idea that the ODE solver approximation
error should be put in the perspective of the observational error. Our
results establish a consistency in order accuracy for the solver and for
the posterior distribution, considering BF’s.

90% CPU was saved using a less accurate solver, that nevertheless
reaches the same, basically error less, results.
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Discussion

Our results would also need to be stated for multiple dimension
observation functions f .

and tested in higher dimension parameter vector.

Also, a generalization of the result to PDE’s would be very useful.
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¡Gracias!

¡GRACIAS!
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